--- license: apache-2.0 base_model: microsoft/swinv2-tiny-patch4-window8-256 tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: swinv2-tiny-patch4-window8-256-finetuned-gardner-te-max results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.594017094017094 --- # swinv2-tiny-patch4-window8-256-finetuned-gardner-te-max This model is a fine-tuned version of [microsoft/swinv2-tiny-patch4-window8-256](https://huggingface.co/microsoft/swinv2-tiny-patch4-window8-256) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.8795 - Accuracy: 0.5940 ## Model description Predict Trophectoderm Grade - Gardner Score from an embryo image ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.0943 | 0.94 | 11 | 1.0750 | 0.6325 | | 0.9996 | 1.96 | 23 | 0.8011 | 0.6325 | | 0.7731 | 2.98 | 35 | 0.7182 | 0.6325 | | 0.7564 | 4.0 | 47 | 0.7109 | 0.6325 | | 0.7331 | 4.94 | 58 | 0.7026 | 0.6325 | | 0.7336 | 5.96 | 70 | 0.6848 | 0.6325 | | 0.7305 | 6.98 | 82 | 0.6938 | 0.6325 | | 0.7314 | 8.0 | 94 | 0.6549 | 0.6325 | | 0.6905 | 8.94 | 105 | 0.6364 | 0.6867 | | 0.7315 | 9.96 | 117 | 0.6223 | 0.6687 | | 0.6839 | 10.98 | 129 | 0.6528 | 0.7530 | | 0.6931 | 12.0 | 141 | 0.6209 | 0.7410 | | 0.6705 | 12.94 | 152 | 0.6296 | 0.7169 | | 0.7227 | 13.96 | 164 | 0.6039 | 0.7108 | | 0.6695 | 14.98 | 176 | 0.6049 | 0.7530 | | 0.6981 | 16.0 | 188 | 0.5965 | 0.7048 | | 0.6566 | 16.94 | 199 | 0.6111 | 0.7410 | | 0.6828 | 17.96 | 211 | 0.5969 | 0.7530 | | 0.6632 | 18.72 | 220 | 0.5947 | 0.7530 | ### Framework versions - Transformers 4.36.2 - Pytorch 2.1.2 - Datasets 2.16.0 - Tokenizers 0.15.0