--- language: - en license: mit model-index: - name: MoMo-70B-LoRA-V1.4 results: - task: type: text-generation name: Text Generation dataset: name: AI2 Reasoning Challenge (25-Shot) type: ai2_arc config: ARC-Challenge split: test args: num_few_shot: 25 metrics: - type: acc_norm value: 69.2 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: HellaSwag (10-Shot) type: hellaswag split: validation args: num_few_shot: 10 metrics: - type: acc_norm value: 85.07 name: normalized accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: MMLU (5-Shot) type: cais/mmlu config: all split: test args: num_few_shot: 5 metrics: - type: acc value: 77.12 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: TruthfulQA (0-shot) type: truthful_qa config: multiple_choice split: validation args: num_few_shot: 0 metrics: - type: mc2 value: 62.66 source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: Winogrande (5-shot) type: winogrande config: winogrande_xl split: validation args: num_few_shot: 5 metrics: - type: acc value: 83.74 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4 name: Open LLM Leaderboard - task: type: text-generation name: Text Generation dataset: name: GSM8k (5-shot) type: gsm8k config: main split: test args: num_few_shot: 5 metrics: - type: acc value: 70.2 name: accuracy source: url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=moreh/MoMo-70B-LoRA-V1.4 name: Open LLM Leaderboard --- # **Introduction** MoMo-72B is trained via Supervised Fine-Tuning (SFT) using [LoRA](https://arxiv.org/abs/2106.09685), with the QWEN-72B model as its base-model. Note that we did not exploit any form of weight merge. For leaderboard submission, the trained weight is realigned for compatibility with llama. MoMo-72B is trained using **[Moreh](https://moreh.io/)**'s [MoAI platform](https://moreh.io/product), which simplifies the training of large-scale models, and AMD's MI250 GPU. ## Details ### Used Librarys - torch - peft ### Used Datasets - Open-Orca/SlimOrca - No other dataset was used - No benchmark test set or the training set are used - [data contamination check](https://github.com/swj0419/detect-pretrain-code-contamination) result | Model | ARC | MMLU | TruthfulQA | GSM8K | |------------------------------|-------|-------|-------|-------| | **V1.4(result < 0.1, %)**| TBU |0.73 | 0.71 | TBU | ### Used Environments - AMD MI250 & MoAI platform - Please visit https://moreh.io/product for more information about MoAI platform - Or, contact us directly [contact@moreh.io](mailto:contact@moreh.io) ## How to use ```python # pip install transformers==4.35.2 import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-72B-LoRA-V1.4") model = AutoModelForCausalLM.from_pretrained( "moreh/MoMo-72B-LoRA-V1.4" ) ``` # [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard) Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_moreh__MoMo-70B-LoRA-V1.4) | Metric |Value| |---------------------------------|----:| |Avg. |74.67| |AI2 Reasoning Challenge (25-Shot)|69.20| |HellaSwag (10-Shot) |85.07| |MMLU (5-Shot) |77.12| |TruthfulQA (0-shot) |62.66| |Winogrande (5-shot) |83.74| |GSM8k (5-shot) |70.20|