--- license: mit language: - en --- # **Introduction** MoMo-70B is trained via Supervised Fine-Tuning (SFT) using [LoRA](https://arxiv.org/abs/2106.09685), with the QWEN-72B model as its base-model. This is a Direct Preference Optimization([DPO](https://arxiv.org/abs/2305.18290)) version of v1.8.4 , with several optimizations in hyperparameters. Note that we did not exploit any form of weight merge. For leaderboard submission, the trained weight is realigned for compatibility with llama. MoMo-70B is trained using **[Moreh](https://moreh.io/)**'s [MoAI platform](https://moreh.io/product), which simplifies the training of large-scale models, and AMD's MI250 GPU. ## Details ### Used Librarys - torch - peft ### Used Datasets - [slimorca](Open-Orca/SlimOrca) - [truthy](https://huggingface.co/datasets/jondurbin/truthy-dpo-v0.1) - [orca_dpo_pairs](https://huggingface.co/datasets/Intel/orca_dpo_pairs) - No other dataset was used - No benchmark test set or the training set are used - [data contamination check](https://github.com/swj0419/detect-pretrain-code-contamination) result | Model | ARC | MMLU | TruthfulQA | GSM8K | |------------------------------|-------|-------|-------|-------| | **V1.8.6(result < 0.1, %)**| TBU |TBU | TBU | TBU | ### Used Environments - AMD MI250 & MoAI platform - Please visit https://moreh.io/product for more information about MoAI platform - Or, contact us directly [contact@moreh.io](mailto:contact@moreh.io) ## How to use ```python # pip install transformers==4.35.2 import torch from transformers import AutoModelForCausalLM, AutoTokenizer tokenizer = AutoTokenizer.from_pretrained("moreh/MoMo-70B-LoRA-V1.8.6") model = AutoModelForCausalLM.from_pretrained( "moreh/MoMo-70B-LoRA-V1.8.6" ) ```