from typing import Dict, Any from transformers import AutoProcessor, Qwen2VLForConditionalGeneration import torch from PIL import Image import requests from io import BytesIO import json # Check for GPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") class EndpointHandler: def __init__(self, path: str = ""): """ Initializes the handler for the Qwen2-VL model. Args: path (str): Path to the model weights and processor. Defaults to the current directory. """ # Load the processor and model self.processor = AutoProcessor.from_pretrained(path) self.model = Qwen2VLForConditionalGeneration.from_pretrained( path, torch_dtype="auto", device_map="auto" ) # Move the model to the appropriate device self.model.to(device) def __call__(self, data: Dict[str, Any]) -> Dict[str, Any]: """ Processes the input data and returns the model's prediction. Args: data (Dict[str, Any]): Input data containing `image_url` and `text`. Returns: Dict[str, Any]: The prediction or an error message. """ image_url = data.get("image_url", "") text = data.get("text", "") # Load the image from the URL try: response = requests.get(image_url) response.raise_for_status() image = Image.open(BytesIO(response.content)) except Exception as e: return {"error": f"Failed to fetch or process image: {str(e)}"} # Prepare the text prompt text_prompt = self.processor.apply_chat_template( [{"role": "user", "content": [{"type": "text", "text": text}]}], add_generation_prompt=True ) # Preprocess the input inputs = self.processor( text=[text_prompt], images=[image], padding=True, return_tensors="pt" ) # Move inputs to the correct device inputs = {key: value.to(device) for key, value in inputs.items()} # Perform inference output_ids = self.model.generate(**inputs, max_new_tokens=128) # Decode the generated text output_text = self.processor.batch_decode( output_ids, skip_special_tokens=True, clean_up_tokenization_spaces=True )[0] # Clean and parse the JSON response cleaned_data = output_text.replace("```json\n", "").replace("```", "").strip() try: prediction = json.loads(cleaned_data) except json.JSONDecodeError as e: return {"error": f"Failed to parse JSON output: {str(e)}", "raw_output": cleaned_data} return {"prediction": prediction}