--- license: other base_model: nvidia/segformer-b1-finetuned-ade-512-512 tags: - vision - image-segmentation - generated_from_trainer metrics: - precision - recall model-index: - name: segformer-b1-finetuned-segments-pv_v1_normalized_p100_4batch_try_7_31 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/mouadn773/huggingface/runs/tgjpuivw) # segformer-b1-finetuned-segments-pv_v1_normalized_p100_4batch_try_7_31 This model is a fine-tuned version of [nvidia/segformer-b1-finetuned-ade-512-512](https://huggingface.co/nvidia/segformer-b1-finetuned-ade-512-512) on the mouadenna/satellite_PV_dataset_train_test_v1 dataset. It achieves the following results on the evaluation set: - Loss: 0.0133 - Mean Iou: 0.8164 - Precision: 0.8785 - Recall: 0.9203 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0004 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Mean Iou | Precision | Recall | |:-------------:|:------:|:----:|:---------------:|:--------:|:---------:|:------:| | 0.0151 | 0.9989 | 229 | 0.0133 | 0.8164 | 0.8785 | 0.9203 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.1.2 - Datasets 2.20.0 - Tokenizers 0.19.1