--- base_model: tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2 datasets: - lmsys/lmsys-chat-1m - tokyotech-llm/lmsys-chat-1m-synth - argilla/magpie-ultra-v0.1 language: - en - ja library_name: transformers license: - llama3.1 - gemma model_type: llama quantized_by: mradermacher --- ## About static quants of https://huggingface.co/tokyotech-llm/Llama-3.1-Swallow-8B-Instruct-v0.2 weighted/imatrix quants are available at https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.Q2_K.gguf) | Q2_K | 3.3 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.Q3_K_S.gguf) | Q3_K_S | 3.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.Q3_K_M.gguf) | Q3_K_M | 4.1 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.Q3_K_L.gguf) | Q3_K_L | 4.4 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.IQ4_XS.gguf) | IQ4_XS | 4.6 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.Q4_0_4_4.gguf) | Q4_0_4_4 | 4.8 | fast on arm, low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.Q4_K_S.gguf) | Q4_K_S | 4.8 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.Q4_K_M.gguf) | Q4_K_M | 5.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.Q5_K_S.gguf) | Q5_K_S | 5.7 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.Q5_K_M.gguf) | Q5_K_M | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.Q6_K.gguf) | Q6_K | 6.7 | very good quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.Q8_0.gguf) | Q8_0 | 8.6 | fast, best quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.1-Swallow-8B-Instruct-v0.2-GGUF/resolve/main/Llama-3.1-Swallow-8B-Instruct-v0.2.f16.gguf) | f16 | 16.2 | 16 bpw, overkill | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.