--- base_model: NaniDAO/Llama-3.3-70B-Instruct-ablated language: - en - fr - it - pt - hi - es - th - de library_name: transformers license: llama3 quantized_by: mradermacher tags: - ablated - ablation - uncensored - nani - llama - llama-3 - chat - instruct --- ## About weighted/imatrix quants of https://huggingface.co/NaniDAO/Llama-3.3-70B-Instruct-ablated static quants are available at https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-i1-GGUF/resolve/main/Llama-3.3-70B-Instruct-ablated.i1-IQ2_M.gguf) | i1-IQ2_M | 24.2 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-i1-GGUF/resolve/main/Llama-3.3-70B-Instruct-ablated.i1-Q2_K_S.gguf) | i1-Q2_K_S | 24.6 | very low quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-i1-GGUF/resolve/main/Llama-3.3-70B-Instruct-ablated.i1-Q2_K.gguf) | i1-Q2_K | 26.5 | IQ3_XXS probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-i1-GGUF/resolve/main/Llama-3.3-70B-Instruct-ablated.i1-IQ3_XXS.gguf) | i1-IQ3_XXS | 27.6 | lower quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-i1-GGUF/resolve/main/Llama-3.3-70B-Instruct-ablated.i1-IQ3_M.gguf) | i1-IQ3_M | 32.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-i1-GGUF/resolve/main/Llama-3.3-70B-Instruct-ablated.i1-Q3_K_M.gguf) | i1-Q3_K_M | 34.4 | IQ3_S probably better | | [GGUF](https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-i1-GGUF/resolve/main/Llama-3.3-70B-Instruct-ablated.i1-IQ4_XS.gguf) | i1-IQ4_XS | 38.0 | | | [GGUF](https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-i1-GGUF/resolve/main/Llama-3.3-70B-Instruct-ablated.i1-Q4_K_S.gguf) | i1-Q4_K_S | 40.4 | optimal size/speed/quality | | [GGUF](https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-i1-GGUF/resolve/main/Llama-3.3-70B-Instruct-ablated.i1-Q4_K_M.gguf) | i1-Q4_K_M | 42.6 | fast, recommended | | [PART 1](https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-i1-GGUF/resolve/main/Llama-3.3-70B-Instruct-ablated.i1-Q6_K.gguf.part1of2) [PART 2](https://huggingface.co/mradermacher/Llama-3.3-70B-Instruct-ablated-i1-GGUF/resolve/main/Llama-3.3-70B-Instruct-ablated.i1-Q6_K.gguf.part2of2) | i1-Q6_K | 58.0 | practically like static Q6_K | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time. Additional thanks to [@nicoboss](https://huggingface.co/nicoboss) for giving me access to his private supercomputer, enabling me to provide many more imatrix quants, at much higher quality, than I would otherwise be able to.