--- base_model: haoranxu/X-ALMA-13B-Pretrain datasets: - oscar-corpus/OSCAR-2301 - allenai/nllb - Helsinki-NLP/opus-100 language: - en - da - nl - de - is - no - sc - af - ca - ro - gl - it - pt - es - bg - mk - sr - uk - ru - id - ms - th - vi - mg - fr - hu - el - cs - pl - lt - lv - ka - zh - ja - ko - fi - et - gu - hi - mr - ne - ur - az - kk - ky - tr - uz - ar - he - fa library_name: transformers license: mit quantized_by: mradermacher --- ## About static quants of https://huggingface.co/haoranxu/X-ALMA-13B-Pretrain weighted/imatrix quants are available at https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-i1-GGUF ## Usage If you are unsure how to use GGUF files, refer to one of [TheBloke's READMEs](https://huggingface.co/TheBloke/KafkaLM-70B-German-V0.1-GGUF) for more details, including on how to concatenate multi-part files. ## Provided Quants (sorted by size, not necessarily quality. IQ-quants are often preferable over similar sized non-IQ quants) | Link | Type | Size/GB | Notes | |:-----|:-----|--------:|:------| | [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF/resolve/main/X-ALMA-13B-Pretrain.Q2_K.gguf) | Q2_K | 5.0 | | | [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF/resolve/main/X-ALMA-13B-Pretrain.Q3_K_S.gguf) | Q3_K_S | 5.8 | | | [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF/resolve/main/X-ALMA-13B-Pretrain.Q3_K_M.gguf) | Q3_K_M | 6.4 | lower quality | | [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF/resolve/main/X-ALMA-13B-Pretrain.Q3_K_L.gguf) | Q3_K_L | 7.0 | | | [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF/resolve/main/X-ALMA-13B-Pretrain.IQ4_XS.gguf) | IQ4_XS | 7.1 | | | [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF/resolve/main/X-ALMA-13B-Pretrain.Q4_K_S.gguf) | Q4_K_S | 7.5 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF/resolve/main/X-ALMA-13B-Pretrain.Q4_K_M.gguf) | Q4_K_M | 8.0 | fast, recommended | | [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF/resolve/main/X-ALMA-13B-Pretrain.Q5_K_S.gguf) | Q5_K_S | 9.1 | | | [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF/resolve/main/X-ALMA-13B-Pretrain.Q5_K_M.gguf) | Q5_K_M | 9.3 | | | [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF/resolve/main/X-ALMA-13B-Pretrain.Q6_K.gguf) | Q6_K | 10.8 | very good quality | | [GGUF](https://huggingface.co/mradermacher/X-ALMA-13B-Pretrain-GGUF/resolve/main/X-ALMA-13B-Pretrain.Q8_0.gguf) | Q8_0 | 13.9 | fast, best quality | Here is a handy graph by ikawrakow comparing some lower-quality quant types (lower is better): ![image.png](https://www.nethype.de/huggingface_embed/quantpplgraph.png) And here are Artefact2's thoughts on the matter: https://gist.github.com/Artefact2/b5f810600771265fc1e39442288e8ec9 ## FAQ / Model Request See https://huggingface.co/mradermacher/model_requests for some answers to questions you might have and/or if you want some other model quantized. ## Thanks I thank my company, [nethype GmbH](https://www.nethype.de/), for letting me use its servers and providing upgrades to my workstation to enable this work in my free time.