--- library_name: transformers license: apache-2.0 base_model: microsoft/conditional-detr-resnet-50 tags: - generated_from_trainer model-index: - name: detr_finetuned_trashify_box_detector results: [] --- # detr_finetuned_trashify_box_detector This model is a fine-tuned version of [microsoft/conditional-detr-resnet-50](https://huggingface.co/microsoft/conditional-detr-resnet-50) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 1.1302 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.05 - num_epochs: 25 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 101.8783 | 1.0 | 50 | 7.5132 | | 4.1455 | 2.0 | 100 | 3.0556 | | 2.5964 | 3.0 | 150 | 2.2737 | | 2.2773 | 4.0 | 200 | 2.0691 | | 2.0818 | 5.0 | 250 | 1.8494 | | 1.9253 | 6.0 | 300 | 1.6872 | | 1.7802 | 7.0 | 350 | 1.6033 | | 1.675 | 8.0 | 400 | 1.4511 | | 1.5263 | 9.0 | 450 | 1.4097 | | 1.4322 | 10.0 | 500 | 1.3397 | | 1.386 | 11.0 | 550 | 1.2897 | | 1.3098 | 12.0 | 600 | 1.2813 | | 1.248 | 13.0 | 650 | 1.2096 | | 1.209 | 14.0 | 700 | 1.2200 | | 1.1757 | 15.0 | 750 | 1.1987 | | 1.144 | 16.0 | 800 | 1.1757 | | 1.0732 | 17.0 | 850 | 1.1935 | | 1.0501 | 18.0 | 900 | 1.1531 | | 0.9864 | 19.0 | 950 | 1.1576 | | 0.9941 | 20.0 | 1000 | 1.1513 | | 0.9589 | 21.0 | 1050 | 1.1450 | | 0.9279 | 22.0 | 1100 | 1.1355 | | 0.9071 | 23.0 | 1150 | 1.1233 | | 0.8851 | 24.0 | 1200 | 1.1338 | | 0.8709 | 25.0 | 1250 | 1.1302 | ### Framework versions - Transformers 4.45.0.dev0 - Pytorch 2.4.0+cu124 - Datasets 2.21.0 - Tokenizers 0.19.1