--- library_name: transformers license: apache-2.0 base_model: answerdotai/ModernBERT-base tags: - generated_from_trainer model-index: - name: ModernBERT-base-ft-fineweb-edu-annotations-8k results: [] --- # ModernBERT-base-ft-fineweb-edu-annotations-8k This model is a fine-tuned version of [answerdotai/ModernBERT-base](https://huggingface.co/answerdotai/ModernBERT-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 1.1265 - F1 Score: 0.7508 - Precision Score: 0.7556 - Recall Score: 0.7485 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 8e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use adamw_torch with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | F1 Score | Precision Score | Recall Score | |:-------------:|:-----:|:-----:|:---------------:|:--------:|:---------------:|:------------:| | 0.6615 | 1.0 | 6374 | 0.5893 | 0.7574 | 0.7746 | 0.7510 | | 0.4344 | 2.0 | 12748 | 0.6108 | 0.7600 | 0.7644 | 0.7572 | | 0.149 | 3.0 | 19122 | 1.1265 | 0.7508 | 0.7556 | 0.7485 | ### Framework versions - Transformers 4.48.0.dev0 - Pytorch 2.5.1+cu121 - Datasets 3.2.0 - Tokenizers 0.21.0