--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy model-index: - name: deberta-v3-large-mnli-2 results: - task: name: Text Classification type: text-classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - name: Accuracy type: accuracy value: 0.8949349064279902 --- # deberta-v3-large-mnli-2 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6763 - Accuracy: 0.8949 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.3676 | 1.0 | 24544 | 0.3761 | 0.8681 | | 0.2782 | 2.0 | 49088 | 0.3605 | 0.8881 | | 0.1986 | 3.0 | 73632 | 0.4672 | 0.8894 | | 0.1299 | 4.0 | 98176 | 0.5248 | 0.8967 | | 0.0643 | 5.0 | 122720 | 0.6489 | 0.8999 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3