--- language: - en license: mit tags: - generated_from_trainer datasets: - glue metrics: - accuracy widget: - text: She was badly wounded already. Another spear would take her down. model-index: - name: deberta-v3-large-mnli-2 results: - task: type: text-classification name: Text Classification dataset: name: GLUE MNLI type: glue args: mnli metrics: - type: accuracy value: 0.8949349064279902 name: Accuracy - task: type: natural-language-inference name: Natural Language Inference dataset: name: glue type: glue config: mnli split: validation_matched metrics: - type: accuracy value: 0.9000509424350484 name: Accuracy verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmU1NTE1YmYwOTA4NmQ3ZWE1MmM0ZDFiNDQ5YWIyMDMyZDhjZWMxYTQ3NGIxOWVkMTQxYTA3MTE2ZTUyYjg0ZiIsInZlcnNpb24iOjF9.UygjleiO4h0rlNa8KJIzJMy2VbMkLF-kB-YowCa_EhLKJQqRr9id5db81MyR_VV3ROrSdHVbCGIM9qxkPRbABg - type: precision value: 0.9000452542826349 name: Precision Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiN2EyMWYxY2ZlNTFhYWRhNjA4MzYxOTI4NDAzMjQwMmI4MTJmMWE3ZWEzZTQwMmMyZTM1MzIxYWEyYzVhNDlmMCIsInZlcnNpb24iOjF9.iq2CgF4ik1_DjPlbmFgxvscryy1NNQjTatCJhDu95sXMdlWkekPS6on3NyEaSDwptKyuTQiF4wh8WZDrfhO_Dw - type: precision value: 0.9000509424350484 name: Precision Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmY5NmE1MjU1Yzg3Mzk3MDJiNGUyMzM5NmYxYjljZjY1OTQ3NWE0MWM2MTZhYjQ4ZWFmY2FkODc4OThkMzIxMCIsInZlcnNpb24iOjF9.yN_8lq_IjeLU1WJknAkoj75MQajxLvsIsf_pOPFT0_Q77Vfhu0AsIdy1WDJcsAw08ziJoNpN_2LGDMBYJmwzCQ - type: precision value: 0.9014585350976404 name: Precision Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZTBkYWM4YTE3N2Q5ZmY5ZTRiMGQ1MDc5ODk2NjQwZDc0ODNkMjk3MjdjMjRlZDU2Yzk1MTliMzhmNjYzYzY2ZCIsInZlcnNpb24iOjF9.f9_fAM_a9LwSBwFgwaO5rdAYzV3wkhHq6yquugL1djRlbISZdpzZFWfJHcS-fvgMayYsklBK_ezbu0f7u7tyDg - type: recall value: 0.900253092056111 name: Recall Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTkwZTRmYzhjNDMyMDllNzFiYTNkMDdjN2E2NmEzOTdjMzAxNjdmMzg3OTFmN2IwZTlmYWY5MWQyMDUyNWRlMSIsInZlcnNpb24iOjF9.aWtX33vOHaGpePRZwO9dfTfWoWyXYCVAf8W1AlHXZto6Ve2HX9RLISTsALRMfNzX-7B6LYLh6qzusjf2xQ20Bw - type: recall value: 0.9000509424350484 name: Recall Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMGFhYzVlZjQ3M2YyYjY1NTBiMGI4NmI4MTgwY2QzY2I3YmMyNjc3YmFhMDU1ZjNlY2FkMjQxOTg3YWYyYTU3ZiIsInZlcnNpb24iOjF9.wPD0-SL1vdG3_bi7cKh_hgVwVr1yV6zRYBzpGe6bDEzV5BYb5lCQoAebS5U1o2H4E4qi7zr2YNFEToNCRTqPBA - type: recall value: 0.9000509424350484 name: Recall Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNThmNjQ4MDY2ZTM3NjQyODQzMTZkNjgyMGNkNDE5MDMwOWJmMzhjZmZjNzllYjA4NmJiZDU3MzU3ODE0YjFhMyIsInZlcnNpb24iOjF9.yN9hb5VWX5ICIXdPBc0OD0BFHnzWv8rmmD--OEh6h1agGiRiyCdROo4saN5CQKiVlPBsHPliaoXra45Xi4gVAg - type: f1 value: 0.8997940135019421 name: F1 Macro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmQzMWZhZTg1ODBmNWFiMGJiZDE5ODA2ZTA3NmUwZDcxMTQ1NzZjNDFiZDZkN2RmMmQ3YzRiMmI2Y2Q3MWRlNiIsInZlcnNpb24iOjF9.lr6jUSxXu6zKs_x-UQT7dL9_PzKTf50KUu7spTzRI6_SkaUyl9Ez0gR-O8bfzypaqkdxvtf7dsNFskpUvJ8wDQ - type: f1 value: 0.9000509424350484 name: F1 Micro verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiMWFiZjAzYjQ4NjFjMThjM2RlOGU1YzRjMmQzZTNhMDVjYWE3Njg5Y2QwMzc4YzY0ODNjOWUwMDJiNGU4ODk2MyIsInZlcnNpb24iOjF9.BsWoM2Mb4Kx5Lzm7b9GstHNuxGX7emrFNRcepgYNhjkeEhj3yJbvbboOaJuWMc9TdJEPr3o1PuNiu7zQ_vy_DQ - type: f1 value: 0.9003949466748086 name: F1 Weighted verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNWQ1NjA2Njc0Njk2YzY0MzIwYTYwMWM5MTZhNzhhZDY2ODgyYzVlODlmN2Q2MjRjNzhhNzMyZDQ1ZmYwMjdlMyIsInZlcnNpb24iOjF9.Xdl4G3GaOXzCRhaoDf_sJThoEQLmlGyf4efJCYFKXCe1DfNb4qOl-_h9LuE3-iacvusjIJFIquhQ7YsLtqbrCg - type: loss value: 0.6493226289749146 name: loss verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiZWU0ZGM5MWE2Mjk3NDI5ZGNkZmFhM2IxYmFiZjVkMjdiNTE4NzA5YWMxNDcxOWYxYjA2MmQ3ZmE1Yzk5M2E2OCIsInZlcnNpb24iOjF9.gsO8l1_9H89OaztnG6rhNuOY-ssmafoUSwuyNRPR5TjqwrimWk4S6k2uCSSoV9h_JvtliFQ94aZhgSB2lGxWCg --- # DeBERTa-v3-large fine-tuned on MNLI This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on the GLUE MNLI dataset. It achieves the following results on the evaluation set: - Loss: 0.6763 - Accuracy: 0.8949 ## Model description [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data. In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we further improved the efficiency of DeBERTa using ELECTRA-Style pre-training with Gradient Disentangled Embedding Sharing. Compared to DeBERTa, our V3 version significantly improves the model performance on downstream tasks. You can find more technique details about the new model from our [paper](https://arxiv.org/abs/2111.09543). Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates. The DeBERTa V3 large model comes with 24 layers and a hidden size of 1024. It has 304M backbone parameters with a vocabulary containing 128K tokens which introduces 131M parameters in the Embedding layer. This model was trained using the 160GB data as DeBERTa V2. ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5.0 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:------:|:---------------:|:--------:| | 0.3676 | 1.0 | 24544 | 0.3761 | 0.8681 | | 0.2782 | 2.0 | 49088 | 0.3605 | 0.8881 | | 0.1986 | 3.0 | 73632 | 0.4672 | 0.8894 | | 0.1299 | 4.0 | 98176 | 0.5248 | 0.8967 | | 0.0643 | 5.0 | 122720 | 0.6489 | 0.8999 | ### Framework versions - Transformers 4.13.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 1.16.1 - Tokenizers 0.10.3