--- license: apache-2.0 language: - en datasets: - wanyu/IteraTeR_full_sent tags: - generated_from_trainer - IteraTeR widget: - text: " Delay-based schemes have the potential to resolve this last packet problem by scheduling the link based on the delay for the packet has encountered." model-index: - name: t5-base-iterater results: [] --- # T5 (base) fine-tuned on IteraTeR This model is a fine-tuned version of [t5-base](https://huggingface.co/t5-base) on an [IteraTeR](https://huggingface.co/datasets/wanyu/IteraTeR_full_sent) dataset. It achieves the following results on the evaluation set: - Loss: 0.2580 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 2 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:-----:|:---------------:| | 0.3286 | 0.09 | 2000 | 0.3010 | | 0.3194 | 0.18 | 4000 | 0.2872 | | 0.3208 | 0.27 | 6000 | 0.2792 | | 0.3091 | 0.36 | 8000 | 0.2731 | | 0.3164 | 0.45 | 10000 | 0.2678 | | 0.2941 | 0.54 | 12000 | 0.2682 | | 0.2981 | 0.63 | 14000 | 0.2696 | | 0.2975 | 0.72 | 16000 | 0.2643 | | 0.3109 | 0.81 | 18000 | 0.2624 | | 0.2965 | 0.9 | 20000 | 0.2648 | | 0.3053 | 0.99 | 22000 | 0.2627 | | 0.2779 | 1.08 | 24000 | 0.2632 | | 0.2692 | 1.17 | 26000 | 0.2608 | | 0.2755 | 1.26 | 28000 | 0.2600 | | 0.2771 | 1.35 | 30000 | 0.2584 | | 0.2774 | 1.44 | 32000 | 0.2609 | | 0.2976 | 1.53 | 34000 | 0.2593 | | 0.2646 | 1.62 | 36000 | 0.2616 | | 0.2705 | 1.71 | 38000 | 0.2574 | | 0.2714 | 1.8 | 40000 | 0.2577 | | 0.2857 | 1.9 | 42000 | 0.2576 | | 0.2832 | 1.99 | 44000 | 0.2580 | ### How to use ```py from transformers import T5ForConditionalGeneration, T5TokenizerFast MODEL_CKPT = 'mrm8488/t5-base-iterater' tokenizer = T5TokenizerFast.from_pretrained(MODEL_CKPT) model = T5ForConditionalGeneration.from_pretrained(MODEL_CKPT) def predict(intent, text): input_text = f"<{intent}> {text}" features = tokenizer([input_text], return_tensors='pt') output = model.generate(input_ids=features['input_ids'], attention_mask=features['attention_mask'], max_length=128, num_beams=8) return tokenizer.decode(output[0], skip_special_tokens=True) text = "Delay-based schemes have the potential to resolve this last packet problem by scheduling the link based on the delay for the packet has encountered." intent = "clarity" predict(intent, text) # Delay-based schemes have the potential to resolve this last packet problem by scheduling the link based on the delay the packet has encountered. ``` ### Framework versions - Transformers 4.18.0.dev0 - Pytorch 1.10.0+cu111 - Datasets 2.0.0 - Tokenizers 0.11.6