--- license: apache-2.0 base_model: rinna/japanese-hubert-base tags: - generated_from_trainer metrics: - wer model-index: - name: hubert-rinnna-jp-jdrtsp-fw07sp-14 results: [] --- # hubert-rinnna-jp-jdrtsp-fw07sp-14 This model is a fine-tuned version of [rinna/japanese-hubert-base](https://huggingface.co/rinna/japanese-hubert-base) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.1685 - Wer: 0.2927 - Cer: 0.1710 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 32 - eval_batch_size: 16 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 64 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 1000 - num_epochs: 25 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | |:-------------:|:-----:|:-----:|:---------------:|:------:|:------:| | 4.4197 | 1.0 | 404 | 4.0767 | 0.9928 | 0.9960 | | 2.8984 | 2.0 | 808 | 2.7950 | 0.9928 | 0.9960 | | 2.1179 | 3.0 | 1212 | 1.9178 | 0.9928 | 0.9960 | | 1.4282 | 4.0 | 1616 | 1.0854 | 0.6262 | 0.4791 | | 1.0793 | 5.0 | 2020 | 0.7672 | 0.4996 | 0.2944 | | 0.9064 | 6.0 | 2424 | 0.6212 | 0.4573 | 0.2737 | | 0.8366 | 7.0 | 2828 | 0.5247 | 0.4132 | 0.2450 | | 0.7425 | 8.0 | 3232 | 0.4502 | 0.3786 | 0.2257 | | 0.7017 | 9.0 | 3636 | 0.3912 | 0.3509 | 0.2082 | | 0.6275 | 10.0 | 4040 | 0.3407 | 0.3328 | 0.1979 | | 0.5853 | 11.0 | 4444 | 0.3045 | 0.3226 | 0.1920 | | 0.5551 | 12.0 | 4848 | 0.2657 | 0.3139 | 0.1865 | | 0.5105 | 13.0 | 5252 | 0.2455 | 0.3086 | 0.1827 | | 0.5073 | 14.0 | 5656 | 0.2389 | 0.3092 | 0.1832 | | 0.4722 | 15.0 | 6060 | 0.2170 | 0.3030 | 0.1781 | | 0.481 | 16.0 | 6464 | 0.2089 | 0.3023 | 0.1783 | | 0.4738 | 17.0 | 6868 | 0.2002 | 0.3004 | 0.1763 | | 0.4518 | 18.0 | 7272 | 0.1990 | 0.3006 | 0.1765 | | 0.4402 | 19.0 | 7676 | 0.1900 | 0.2999 | 0.1764 | | 0.4387 | 20.0 | 8080 | 0.1826 | 0.2970 | 0.1740 | | 0.4212 | 21.0 | 8484 | 0.1767 | 0.2955 | 0.1733 | | 0.3893 | 22.0 | 8888 | 0.1707 | 0.2937 | 0.1719 | | 0.4055 | 23.0 | 9292 | 0.1704 | 0.2943 | 0.1723 | | 0.394 | 24.0 | 9696 | 0.1684 | 0.2934 | 0.1716 | | 0.3997 | 25.0 | 10100 | 0.1685 | 0.2927 | 0.1710 | ### Framework versions - Transformers 4.34.0.dev0 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3