--- license: apache-2.0 language: - tg tags: - generated_from_trainer - whisper-event - hf-asr-leaderboard metrics: - wer model-index: - name: whisper-small-tg results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: google/fleurs type: google/fleurs config: tg_tj split: test args: tg_tj metrics: - name: Wer type: wer value: 28.3622 --- # whisper-small-tg This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the [google/fleurs](https://huggingface.co/datasets/google/fleurs) dataset. It achieves the following results on the evaluation set: - Loss: 0.6917 - Wer: 28.3622 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 64 - eval_batch_size: 32 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 4000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0011 | 25.0 | 1000 | 0.5801 | 28.1310 | | 0.0004 | 50.0 | 2000 | 0.6423 | 28.2620 | | 0.0002 | 75.0 | 3000 | 0.6796 | 28.3931 | | 0.0002 | 100.0 | 4000 | 0.6917 | 28.3622 | ### Framework versions - Transformers 4.26.0.dev0 - Pytorch 1.13.0+cu117 - Datasets 2.7.1.dev0 - Tokenizers 0.13.2