--- license: other license_name: deepseek license_link: https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL --- v0.1 PRM Model adapted from: https://huggingface.co/deepseek-ai/deepseek-math-7b-rl This is a process reward model mostly trained on a flattened version of PRM800k using LORA and merged back to full model. ### 1. How to Use ```python prm_tokenizer = AutoTokenizer.from_pretrained("mukaj/deepseek-math-7b-rl-prm-v0.1") prm_tokenizer.pad_token = prm_tokenizer.eos_token prm_model = AutoModelForSequenceClassification.from_pretrained("mukaj/deepseek-math-7b-rl-prm-v0.1").eval() encoded_inputs = [prm_tokenizer.encode(candidate, return_tensors="pt") for candidate in batch_candidates] max_length = max([input_id.shape[1] for input_id in encoded_inputs]) # Find the longest sequence padded_inputs = [ torch.nn.functional.pad(input_id, (0, max_length - input_id.size(1)), value=prm_tokenizer.pad_token_id) for input_id in encoded_inputs] input_ids = torch.cat(padded_inputs, dim=0).to("cuda") with torch.no_grad(): outputs = prm_model(input_ids) logits = outputs.logits[0] scores = logits.softmax(dim=-1) log_probs = scores.log() ``` ### 2. License This code repository is licensed under the MIT License. The use of DeepSeekMath models is subject to the Model License. DeepSeekMath supports commercial use. See the [LICENSE-MODEL](https://github.com/deepseek-ai/DeepSeek-Math/blob/main/LICENSE-MODEL) for more details. ### 3. have any questions, please raise an issue or contact original team at [service@deepseek.com](mailto:service@deepseek.com).