--- language: - ur license: mit tags: - generated_from_trainer datasets: - imdb_urdu_reviews widget: - text: میں نے یہ فلم دیکھنے کے لئے بہت احتیاط کی تھی، لیکن اس کی کہانی اور اداکاری نے میری توقعات کو پورا کیا۔ بالکل شاندار فلم! example_title: Positive Example 1 - text: اس فلم کی کہانی بہت بے معنی اور بے چارہ ہے۔ میں نے اپنا وقت اور پیسہ برباد کر دیا۔ براہ کرم اس سے بچیں! example_title: Negative Example 1 - text: یہ ناقابل فہم فلم ہے۔ کوئی بھی اسے دیکھ کر توڑ دل ہو جائے گا۔ بلکل بے فائدہ! example_title: Negative Example 2 - text: میں نے ہمیشہ کی طرح اس فلم کو بھی بہت مزہ دیا۔ اداکاری، کہانی، اور ڈائریکشن سب بہترین تھی۔ دل کھول کر تصویر دیکھنے کا موقع! example_title: Positive Example 2 - text: اس فلم میں اتنی بے وقوفی دکھائی گئی ہے کہ آپ بھی اپنے دماغ کو چیک کریں گے۔ بلکل بکواس! example_title: Negative Example 3 base_model: urduhack/roberta-urdu-small model-index: - name: UrduClassification results: [] --- # UrduClassification This model is a fine-tuned version of [urduhack/roberta-urdu-small](https://huggingface.co/urduhack/roberta-urdu-small) on the imdb_urdu_reviews dataset. It achieves the following results on the evaluation set: - Loss: 0.4703 ## Model Details - Model Name: Urdu Sentiment Classification - Model Architecture: RobertaForSequenceClassification - Base Model: urduhack/roberta-urdu-small - Dataset: IMDB Urdu Reviews - Task: Sentiment Classification (Positive/Negative) ## Training Procedure The model was fine-tuned using the transformers library and the Trainer class from Hugging Face. The training process involved the following steps: 1. Tokenization: The input Urdu text was tokenized using the RobertaTokenizerFast from the "urduhack/roberta-urdu-small" pre-trained model. The texts were padded and truncated to a maximum length of 256 tokens. 2. Model Architecture: The "urduhack/roberta-urdu-small" pre-trained model was loaded as the base model for sequence classification using the RobertaForSequenceClassification class. 3. Training Arguments: The training arguments were set, including the number of training epochs, batch size, learning rate, evaluation strategy, logging strategy, and more. 4. Training: The model was trained on the training dataset using the Trainer class. The training process was performed with gradient-based optimization techniques to minimize the cross-entropy loss between predicted and actual sentiment labels. 5. Evaluation: After each epoch, the model was evaluated on the validation dataset to monitor its performance. The evaluation results, including training loss and validation loss, were logged for analysis. 6. Fine-Tuning: The model parameters were fine-tuned during the training process to optimize its performance on the IMDb Urdu movie reviews sentiment analysis task. ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:-----:|:----:|:---------------:| | 0.4078 | 1.0 | 2500 | 0.3954 | | 0.2633 | 2.0 | 5000 | 0.4007 | | 0.1205 | 3.0 | 7500 | 0.4703 | ## Evaluation Results The model was evaluated on an undisclosed dataset using a language modeling task. The evaluation results after 3 epochs of fine-tuning are as follows: - Evaluation Loss: 0.3954 - Evaluation Runtime: 51.60 seconds - Average Samples per Second: 96.89 - Average Steps per Second: 6.06 - Epoch: 3.0 ### Framework versions - Transformers 4.30.2 - Pytorch 2.0.0 - Datasets 2.1.0 - Tokenizers 0.13.3