--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:7851 - loss:MultipleNegativesRankingLoss base_model: microsoft/mpnet-base widget: - source_sentence: did I gain any profits over the past 10 days sentences: - Which stocks have a strong potential to see a 10% increase in the next 10 months? - Did I make any money from trading in the last 10 days - Which stocks have a strong potential to go up by 10% in the next 10 months? - source_sentence: Can you show me my holdings? sentences: - Reveal my highest-risk assets - Display my riskiest investment holdings - 'I''d like to see my portfolio details ' - source_sentence: Do I have any stocks in my portfolio? sentences: - Are there any shares of stock included in my portfolio? - Unfold my individualized fintech recommendations - What's the numerical assessment of my portfolio? - source_sentence: View my report card sentences: - Which sectors are the most attractive to investors in my portfolio - Recalibrate portfolio from stocks to mutual fund holdings - Get my account overview - source_sentence: Which of my investments have the highest volatility? sentences: - Can I see a yearly analysis of my returns - Have I committed resources to any equity-driven investment funds? - Which of my assets show the most pronounced fluctuations in market value? pipeline_tag: sentence-similarity library_name: sentence-transformers --- # SentenceTransformer based on microsoft/mpnet-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [microsoft/mpnet-base](https://huggingface.co/microsoft/mpnet-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: MPNetModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("pawan2411/semantic-embedding_2") # Run inference sentences = [ 'Which of my investments have the highest volatility?', 'Which of my assets show the most pronounced fluctuations in market value?', 'Can I see a yearly analysis of my returns', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 7,851 training samples * Columns: sentence_0 and sentence_1 * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------| | type | string | string | | details | | | * Samples: | sentence_0 | sentence_1 | |:----------------------------------------------------------------------|:-------------------------------------------------------------------------------------------------| | Show me how to switch my stock portfolio to mutual funds | What steps should I take to replace my stock holdings with mutual fund investments? | | View my holdings | See my investment portfolio | | How did my portfolio perform last week ? | Can you give me a rundown of my portfolio's performance for the past week? | * Loss: [MultipleNegativesRankingLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#multiplenegativesrankingloss) with these parameters: ```json { "scale": 20.0, "similarity_fct": "cos_sim" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `num_train_epochs`: 50 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: no - `prediction_loss_only`: True - `per_device_train_batch_size`: 64 - `per_device_eval_batch_size`: 64 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 50 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: False - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | |:--------:|:-----:|:-------------:| | 4.0650 | 500 | 2.1067 | | 8.1301 | 1000 | 0.8233 | | 12.1951 | 1500 | 0.6455 | | 16.2602 | 2000 | 0.5768 | | 20.3252 | 2500 | 0.5378 | | 24.3902 | 3000 | 0.5155 | | 28.4553 | 3500 | 0.499 | | 32.5203 | 4000 | 0.4906 | | 36.5854 | 4500 | 0.4841 | | 40.6504 | 5000 | 0.4801 | | 44.7154 | 5500 | 0.4746 | | 48.7805 | 6000 | 0.4718 | | 52.8455 | 6500 | 0.47 | | 56.9106 | 7000 | 0.468 | | 60.9756 | 7500 | 0.4655 | | 65.0407 | 8000 | 0.4634 | | 69.1057 | 8500 | 0.462 | | 73.1707 | 9000 | 0.4604 | | 77.2358 | 9500 | 0.46 | | 81.3008 | 10000 | 0.4598 | | 85.3659 | 10500 | 0.458 | | 89.4309 | 11000 | 0.4574 | | 93.4959 | 11500 | 0.4566 | | 97.5610 | 12000 | 0.4565 | | 101.6260 | 12500 | 0.4558 | | 105.6911 | 13000 | 0.455 | | 109.7561 | 13500 | 0.4551 | | 113.8211 | 14000 | 0.455 | | 117.8862 | 14500 | 0.4544 | | 121.9512 | 15000 | 0.4533 | | 126.0163 | 15500 | 0.4543 | | 130.0813 | 16000 | 0.4535 | | 134.1463 | 16500 | 0.4532 | | 138.2114 | 17000 | 0.4522 | | 142.2764 | 17500 | 0.4536 | | 146.3415 | 18000 | 0.4521 | | 4.0650 | 500 | 0.4898 | | 8.1301 | 1000 | 0.4737 | | 12.1951 | 1500 | 0.4681 | | 16.2602 | 2000 | 0.4669 | | 20.3252 | 2500 | 0.4645 | | 24.3902 | 3000 | 0.4626 | | 28.4553 | 3500 | 0.4586 | | 32.5203 | 4000 | 0.4568 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.1.1 - Transformers: 4.45.2 - PyTorch: 2.5.1+cu121 - Accelerate: 1.1.1 - Datasets: 3.1.0 - Tokenizers: 0.20.3 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```