--- license: mit base_model: shi-labs/nat-mini-in1k-224 tags: - generated_from_trainer datasets: - image_folder metrics: - accuracy - f1 model-index: - name: nat-mini-in1k-224-finetuned-breakhis results: - task: name: Image Classification type: image-classification dataset: name: image_folder type: image_folder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.9669421487603306 - name: F1 type: f1 value: 0.9612429172231991 --- # nat-mini-in1k-224-finetuned-breakhis This model is a fine-tuned version of [shi-labs/nat-mini-in1k-224](https://huggingface.co/shi-labs/nat-mini-in1k-224) on the image_folder dataset. It achieves the following results on the evaluation set: - Loss: 0.0983 - Accuracy: 0.9669 - F1: 0.9612 - Roc Auc: 0.9648 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - gradient_accumulation_steps: 4 - total_train_batch_size: 128 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Roc Auc | |:-------------:|:-----:|:----:|:---------------:|:--------:|:------:|:-------:| | 0.3247 | 0.99 | 59 | 0.2084 | 0.9157 | 0.8968 | 0.8836 | | 0.1338 | 2.0 | 119 | 0.1686 | 0.9355 | 0.9266 | 0.9437 | | 0.1078 | 2.99 | 178 | 0.0986 | 0.9694 | 0.9636 | 0.9597 | | 0.0795 | 4.0 | 238 | 0.0957 | 0.9719 | 0.9668 | 0.9660 | | 0.0522 | 4.96 | 295 | 0.0983 | 0.9669 | 0.9612 | 0.9648 | ### Framework versions - Transformers 4.38.1 - Pytorch 2.1.2 - Datasets 2.1.0 - Tokenizers 0.15.2