--- license: apache-2.0 language: - tr pipeline_tag: text-classification tags: - job advertisement - turkish bert - bert-based - StratifiedKFold --- --- language: - tr tags: - translation license: apache-2.0 --- ## About the model It has been trained with 15451 real job advertisement data taken as tagged by isinolsun.com Included classes; - Uygun İlan - Is Ilani Degil - Mustehcen - Cift Pozisyon Accordingly, the success rates in education are as follows; - **Model is Turkish bert-based.** - **Used StratifiedKFold(5) for validation.** - results [0.806858621805241, 0.8912621359223301, 0.9440129449838188, 0.9750809061488673, 0.9851132686084142] Mean-Precision: 0.9204655754937342 | | Uygun İlan | Is Ilani Degil | Mustehcen | Cift Pozisyon | | ------ | ------ | ------ | ------ | ------ | | Precision | 0.986 | 0.996 | 0.966 | 0.970 | | Recall | 0.992 | 0.986 | 0.966 | 0.959 | | F1 Score | 0.989 | 0.991 | 0.966 | 0.965 | Accuracy : 0.975 ## Example ```sh from transformers import AutoTokenizer, TextClassificationPipeline, TFBertForSequenceClassification tokenizer = AutoTokenizer.from_pretrained("nanelimon/bert-base-turkish-job-advertisement") model = TFBertForSequenceClassification.from_pretrained("nanelimon/bert-base-turkish-job-advertisement", from_pt=True) pipe = TextClassificationPipeline(model=model, tokenizer=tokenizer) print(pipe('Bu bir denemedir hadi sende dene!')) ``` Result; ```sh [{'label': 'Is Ilani Degil', 'score': 0.999987899677558}] ``` - label= It shows which class the sent Turkish text belongs to according to the model. - score= It shows the compliance rate of the Turkish text sent to the label found. ## Authors - Seyma SARIGIL: seymasargil@gmail.com - Murat KOKLU: mkoklu@selcuk.edu.tr ## License apache-2.0 **Free Software, Hell Yeah!**