--- license: mit tags: - generated_from_trainer datasets: - squad_v2 - quoref - adversarial_qa - duorc model-index: - name: rob-base-gc1 results: - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - name: Exact Match type: exact_match value: 42.9 verified: true - name: F1 type: f1 value: 53.8954 verified: true - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - name: Exact Match type: exact_match value: 79.5382 verified: true - name: F1 type: f1 value: 82.7221 verified: true - task: type: question-answering name: Question Answering dataset: name: quoref type: quoref config: default split: validation metrics: - name: Exact Match type: exact_match value: 78.403 verified: true - name: F1 type: f1 value: 82.1408 verified: true --- # rob-base-gc1 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 64 - total_train_batch_size: 256 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.10.0+cpu - Datasets 2.4.0 - Tokenizers 0.12.1