--- license: mit tags: - generated_from_trainer datasets: - squad_v2 - quoref - adversarial_qa - duorc model-index: - name: rob-base-gc1 results: - task: type: question-answering name: Question Answering dataset: name: adversarial_qa type: adversarial_qa config: adversarialQA split: validation metrics: - type: exact_match value: 42.9 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiODRhNDM3Y2RlYzgyMzQ3MDdlMzc1YmFmNjFkYjYzODFiNjU4Mzg5YmZkMTI0N2U5NTAyMTA2ODQ4MmY5Mzc3MiIsInZlcnNpb24iOjF9.jFyNzcBNLdKPZJHtcwmSE_rgT9nT1EavaleEGtB1U9fA2iGkjUFeWcF539mNrUSzfObj5tCbNWgHGASa7gPQDA - type: f1 value: 53.8954 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNDQ3MzhmMTcxYmM0ZjA2MjgwNjJkYTU5NDkyMGNiZjZiMDc2MzZhOTM2ZWM3ZDIwMjg0ODlmNGZkNWU3ODkyNyIsInZlcnNpb24iOjF9.8eXunF16sRKtW0tfSBMFjKA2LUVPzgIxkjQ1d2qz0FyEYA7PM0Zp5DJ_WhlIowbvjKAe5YQOV-ACCksS-_43Bw - task: type: question-answering name: Question Answering dataset: name: squad_v2 type: squad_v2 config: squad_v2 split: validation metrics: - type: exact_match value: 79.5382 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiYmI4M2I4MDJiMWYzNjE0YmU2OGNmZjU5ZDA5MzM4ODhlZjNkMjMyOTQ4YTlkYzdjMGYzN2U5N2IyOGQwM2QzMCIsInZlcnNpb24iOjF9.vQ0xbOhNvzMXefT2VKpDdCzIFj80KxFD3fVk_qNaPH9TzHw5Vu1rBx6GVePsYblSV7-VwR20WMuKsitRNRrMAA - type: f1 value: 82.7221 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjBiN2I3YzE5OTQwZTg4NDE4MjBiODY1ZDQwMzYwNmY0MTA5NzJlNTg0NmEyNDJkZjRhM2IyZWM3MDQ3NGU3OSIsInZlcnNpb24iOjF9.QMaxPxW1SU-240Qx_aNr6BWTJ67nEy_abhgTmrIk4PreH5EbH13H8Kn3u21p85XmDNMPBxE-uh2mR57x1bjJAg - task: type: question-answering name: Question Answering dataset: name: quoref type: quoref config: default split: validation metrics: - type: exact_match value: 78.403 name: Exact Match verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiOTY1NzA2NWQ2YTgxOWNjNGM5MTc5ODVmMjI5NGIxZjZlOGQxYzUzNDI0YzgyNjdiYjhjMDc0NmY5YTZkZjg4YiIsInZlcnNpb24iOjF9.PyLmsoXlKaTryvr1L7SGp9tBMyKwe9YDodYjXBw1sA2F-AHts_G9RPljx0ujFYbp7mcVuTKkzeQ3mGHZpG0eCw - type: f1 value: 82.1408 name: F1 verified: true verifyToken: eyJhbGciOiJFZERTQSIsInR5cCI6IkpXVCJ9.eyJoYXNoIjoiNjE2MzY5NzFhYWVhMzJmNWYyOWQzYjJjNjk5OWNkZWMwODNiNmIwMmQwMzcwYmEwZjBjNGZhYmI2OGNkMTk0YSIsInZlcnNpb24iOjF9.9dRYfF2mLRsUCD5uTE9h1vfSSMFzDmjVkFEAjl0h1BSaNUCxLk6aDMeYin3qi7kG4SEeqrRycg_Cc0gGUQmmDg --- # rob-base-gc1 This model is a fine-tuned version of [roberta-base](https://huggingface.co/roberta-base) on the None dataset. ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0001 - train_batch_size: 4 - eval_batch_size: 4 - seed: 42 - distributed_type: IPU - gradient_accumulation_steps: 64 - total_train_batch_size: 256 - total_eval_batch_size: 20 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 2.0 - training precision: Mixed Precision ### Training results ### Framework versions - Transformers 4.20.0 - Pytorch 1.10.0+cpu - Datasets 2.4.0 - Tokenizers 0.12.1