--- base_model: NousResearch/Nous-Hermes-2-Yi-34B inference: true model_type: llama quantized_by: mgoin tags: - nm-vllm - sparse --- ## Nous-Hermes-2-Yi-34B-pruned50 This repo contains model files for [Nous Hermes 2 - Yi-34B](https://huggingface.co/NousResearch/Nous-Hermes-2-Yi-34B) optimized for [NM-vLLM](https://github.com/neuralmagic/nm-vllm), a high-throughput serving engine for compressed LLMs. This model was pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [NM-vLLM](https://github.com/neuralmagic/nm-vllm) for fast inference and low memory-usage: ```bash pip install nm-vllm[sparse] ``` Run in a Python pipeline for local inference: ```python from vllm import LLM, SamplingParams model = LLM("nm-testing/Nous-Hermes-2-Yi-34B-pruned50", sparsity="sparse_w16a16") prompt = "How to make banana bread?" formatted_prompt = f"<|im_start|>User:{prompt}\n<|im_start|>assistant:\n" sampling_params = SamplingParams(max_tokens=100, temperature=0) outputs = model.generate(formatted_prompt, sampling_params=sampling_params) print(outputs[0].outputs[0].text) """ To make banana bread, you will need the following ingredients: Ingredients: - 2 ripe bananas - 1 cup all-purpose flour - 1/2 cup sugar - 1/2 cup butter - 1 teaspoon baking soda - 1 teaspoon baking powder - 1/2 teaspoon salt - 1/2 cup milk - 1 teaspoon vanilla extract Instructions: 1. Preheat the oven to 3 """ ``` ## Prompt template ``` <|im_start|>User:{prompt} <|im_start|>assistant: ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. Install [SparseML](https://github.com/neuralmagic/sparseml): ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" ``` Replace the recipe as you like and run this one-shot compression script to apply SparseGPT: ```python import sparseml.transformers original_model_name = "NousResearch/Nous-Hermes-2-Yi-34B" calibration_dataset = "open_platypus" output_directory = "output/" recipe = """ test_stage: obcq_modifiers: SparseGPTModifier: sparsity: 0.5 sequential_update: true mask_structure: 0:0 targets: ['re:model.layers.\d*$'] """ # Apply SparseGPT to the model sparseml.transformers.oneshot( model=original_model_name, dataset=calibration_dataset, recipe=recipe, output_dir=output_directory, ) ``` ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)