--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: no-voice-clone-large-finetune results: [] --- [Visualize in Weights & Biases](https://wandb.ai/neuronbit-tech/finetune_only_torgo_imperative_sentences/runs/fnfnnxr1) # no-voice-clone-large-finetune This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4678 - Wer: 18.7667 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 100 - training_steps: 1000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.0528 | 1.8692 | 100 | 0.4677 | 20.6937 | | 0.0076 | 3.7383 | 200 | 0.4470 | 18.0848 | | 0.0012 | 5.6075 | 300 | 0.4580 | 18.0255 | | 0.0002 | 7.4766 | 400 | 0.4565 | 17.4326 | | 0.0001 | 9.3458 | 500 | 0.4601 | 18.7370 | | 0.0001 | 11.2150 | 600 | 0.4634 | 18.5295 | | 0.0 | 13.0841 | 700 | 0.4653 | 18.5888 | | 0.0 | 14.9533 | 800 | 0.4667 | 18.5591 | | 0.0 | 16.8224 | 900 | 0.4675 | 18.7963 | | 0.0 | 18.6916 | 1000 | 0.4678 | 18.7667 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3