--- library_name: transformers license: apache-2.0 base_model: openai/whisper-large-v3 tags: - generated_from_trainer metrics: - wer model-index: - name: voice-clone-large-finetune-final results: [] --- [Visualize in Weights & Biases](https://wandb.ai/neuronbit-tech/finetune_voice_clone_imperative_final/runs/5xtsu8wf) # voice-clone-large-finetune-final This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.4377 - Wer: 15.3572 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 16 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 5000 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-------:|:----:|:---------------:|:-------:| | 0.1607 | 0.8460 | 250 | 0.5163 | 25.9413 | | 0.0598 | 1.6920 | 500 | 0.4849 | 24.8444 | | 0.0257 | 2.5381 | 750 | 0.4450 | 30.4180 | | 0.0141 | 3.3841 | 1000 | 0.4369 | 19.3003 | | 0.0029 | 4.2301 | 1250 | 0.4267 | 16.0095 | | 0.0015 | 5.0761 | 1500 | 0.4209 | 18.4109 | | 0.0063 | 5.9222 | 1750 | 0.4259 | 19.3300 | | 0.0016 | 6.7682 | 2000 | 0.4341 | 17.7587 | | 0.0009 | 7.6142 | 2250 | 0.4121 | 17.0471 | | 0.0013 | 8.4602 | 2500 | 0.4199 | 16.3653 | | 0.0009 | 9.3063 | 2750 | 0.4233 | 16.5135 | | 0.001 | 10.1523 | 3000 | 0.4237 | 16.0688 | | 0.0019 | 10.9983 | 3250 | 0.4230 | 16.4542 | | 0.0014 | 11.8443 | 3500 | 0.4292 | 15.8316 | | 0.0007 | 12.6904 | 3750 | 0.4291 | 15.8316 | | 0.0005 | 13.5364 | 4000 | 0.4321 | 15.3869 | | 0.0009 | 14.3824 | 4250 | 0.4334 | 15.2980 | | 0.001 | 15.2284 | 4500 | 0.4344 | 15.2980 | | 0.0 | 16.0745 | 4750 | 0.4372 | 15.3572 | | 0.0 | 16.9205 | 5000 | 0.4377 | 15.3572 | ### Framework versions - Transformers 4.45.2 - Pytorch 2.5.1+cu124 - Datasets 3.1.0 - Tokenizers 0.20.3