--- pipeline_tag: sentence-similarity tags: - text-embedding - embeddings - information-retrieval - beir - text-classification - language-model - text-clustering - text-semantic-similarity - text-evaluation - prompt-retrieval - text-reranking - sentence-transformers - feature-extraction - sentence-similarity - transformers - t5 - English - Sentence Similarity - natural_questions - ms_marco - fever - hotpot_qa - mteb language: en inference: false license: apache-2.0 model-index: - name: final_xl_results results: - task: type: Classification dataset: type: mteb/amazon_counterfactual name: MTEB AmazonCounterfactualClassification (en) config: en split: test revision: e8379541af4e31359cca9fbcf4b00f2671dba205 metrics: - type: accuracy value: 85.08955223880596 - type: ap value: 52.66066378722476 - type: f1 value: 79.63340218960269 - task: type: Classification dataset: type: mteb/amazon_polarity name: MTEB AmazonPolarityClassification config: default split: test revision: e2d317d38cd51312af73b3d32a06d1a08b442046 metrics: - type: accuracy value: 86.542 - type: ap value: 81.92695193008987 - type: f1 value: 86.51466132573681 - task: type: Classification dataset: type: mteb/amazon_reviews_multi name: MTEB AmazonReviewsClassification (en) config: en split: test revision: 1399c76144fd37290681b995c656ef9b2e06e26d metrics: - type: accuracy value: 42.964 - type: f1 value: 41.43146249774862 - task: type: Retrieval dataset: type: arguana name: MTEB ArguAna config: default split: test revision: None metrics: - type: map_at_1 value: 29.872 - type: map_at_10 value: 46.342 - type: map_at_100 value: 47.152 - type: map_at_1000 value: 47.154 - type: map_at_3 value: 41.216 - type: map_at_5 value: 44.035999999999994 - type: mrr_at_1 value: 30.939 - type: mrr_at_10 value: 46.756 - type: mrr_at_100 value: 47.573 - type: mrr_at_1000 value: 47.575 - type: mrr_at_3 value: 41.548 - type: mrr_at_5 value: 44.425 - type: ndcg_at_1 value: 29.872 - type: ndcg_at_10 value: 55.65 - type: ndcg_at_100 value: 58.88099999999999 - type: ndcg_at_1000 value: 58.951 - type: ndcg_at_3 value: 45 - type: ndcg_at_5 value: 50.09 - type: precision_at_1 value: 29.872 - type: precision_at_10 value: 8.549 - type: precision_at_100 value: 0.991 - type: precision_at_1000 value: 0.1 - type: precision_at_3 value: 18.658 - type: precision_at_5 value: 13.669999999999998 - type: recall_at_1 value: 29.872 - type: recall_at_10 value: 85.491 - type: recall_at_100 value: 99.075 - type: recall_at_1000 value: 99.644 - type: recall_at_3 value: 55.974000000000004 - type: recall_at_5 value: 68.35 - task: type: Clustering dataset: type: mteb/arxiv-clustering-p2p name: MTEB ArxivClusteringP2P config: default split: test revision: a122ad7f3f0291bf49cc6f4d32aa80929df69d5d metrics: - type: v_measure value: 42.452729850641276 - task: type: Clustering dataset: type: mteb/arxiv-clustering-s2s name: MTEB ArxivClusteringS2S config: default split: test revision: f910caf1a6075f7329cdf8c1a6135696f37dbd53 metrics: - type: v_measure value: 32.21141846480423 - task: type: Reranking dataset: type: mteb/askubuntudupquestions-reranking name: MTEB AskUbuntuDupQuestions config: default split: test revision: 2000358ca161889fa9c082cb41daa8dcfb161a54 metrics: - type: map value: 65.34710928952622 - type: mrr value: 77.61124301983028 - task: type: STS dataset: type: mteb/biosses-sts name: MTEB BIOSSES config: default split: test revision: d3fb88f8f02e40887cd149695127462bbcf29b4a metrics: - type: cos_sim_spearman value: 84.15312230525639 - task: type: Classification dataset: type: mteb/banking77 name: MTEB Banking77Classification config: default split: test revision: 0fd18e25b25c072e09e0d92ab615fda904d66300 metrics: - type: accuracy value: 82.66233766233766 - type: f1 value: 82.04175284777669 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-p2p name: MTEB BiorxivClusteringP2P config: default split: test revision: 65b79d1d13f80053f67aca9498d9402c2d9f1f40 metrics: - type: v_measure value: 37.36697339826455 - task: type: Clustering dataset: type: mteb/biorxiv-clustering-s2s name: MTEB BiorxivClusteringS2S config: default split: test revision: 258694dd0231531bc1fd9de6ceb52a0853c6d908 metrics: - type: v_measure value: 30.551241447593092 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackAndroidRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 36.797000000000004 - type: map_at_10 value: 48.46 - type: map_at_100 value: 49.968 - type: map_at_1000 value: 50.080000000000005 - type: map_at_3 value: 44.71 - type: map_at_5 value: 46.592 - type: mrr_at_1 value: 45.494 - type: mrr_at_10 value: 54.747 - type: mrr_at_100 value: 55.43599999999999 - type: mrr_at_1000 value: 55.464999999999996 - type: mrr_at_3 value: 52.361000000000004 - type: mrr_at_5 value: 53.727000000000004 - type: ndcg_at_1 value: 45.494 - type: ndcg_at_10 value: 54.989 - type: ndcg_at_100 value: 60.096000000000004 - type: ndcg_at_1000 value: 61.58 - type: ndcg_at_3 value: 49.977 - type: ndcg_at_5 value: 51.964999999999996 - type: precision_at_1 value: 45.494 - type: precision_at_10 value: 10.558 - type: precision_at_100 value: 1.6049999999999998 - type: precision_at_1000 value: 0.203 - type: precision_at_3 value: 23.796 - type: precision_at_5 value: 16.881 - type: recall_at_1 value: 36.797000000000004 - type: recall_at_10 value: 66.83 - type: recall_at_100 value: 88.34100000000001 - type: recall_at_1000 value: 97.202 - type: recall_at_3 value: 51.961999999999996 - type: recall_at_5 value: 57.940000000000005 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackEnglishRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 32.597 - type: map_at_10 value: 43.424 - type: map_at_100 value: 44.78 - type: map_at_1000 value: 44.913 - type: map_at_3 value: 40.315 - type: map_at_5 value: 41.987 - type: mrr_at_1 value: 40.382 - type: mrr_at_10 value: 49.219 - type: mrr_at_100 value: 49.895 - type: mrr_at_1000 value: 49.936 - type: mrr_at_3 value: 46.996 - type: mrr_at_5 value: 48.231 - type: ndcg_at_1 value: 40.382 - type: ndcg_at_10 value: 49.318 - type: ndcg_at_100 value: 53.839999999999996 - type: ndcg_at_1000 value: 55.82899999999999 - type: ndcg_at_3 value: 44.914 - type: ndcg_at_5 value: 46.798 - type: precision_at_1 value: 40.382 - type: precision_at_10 value: 9.274000000000001 - type: precision_at_100 value: 1.497 - type: precision_at_1000 value: 0.198 - type: precision_at_3 value: 21.592 - type: precision_at_5 value: 15.159 - type: recall_at_1 value: 32.597 - type: recall_at_10 value: 59.882000000000005 - type: recall_at_100 value: 78.446 - type: recall_at_1000 value: 90.88000000000001 - type: recall_at_3 value: 46.9 - type: recall_at_5 value: 52.222 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGamingRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 43.8 - type: map_at_10 value: 57.293000000000006 - type: map_at_100 value: 58.321 - type: map_at_1000 value: 58.361 - type: map_at_3 value: 53.839999999999996 - type: map_at_5 value: 55.838 - type: mrr_at_1 value: 49.592000000000006 - type: mrr_at_10 value: 60.643 - type: mrr_at_100 value: 61.23499999999999 - type: mrr_at_1000 value: 61.251999999999995 - type: mrr_at_3 value: 58.265 - type: mrr_at_5 value: 59.717 - type: ndcg_at_1 value: 49.592000000000006 - type: ndcg_at_10 value: 63.364 - type: ndcg_at_100 value: 67.167 - type: ndcg_at_1000 value: 67.867 - type: ndcg_at_3 value: 57.912 - type: ndcg_at_5 value: 60.697 - type: precision_at_1 value: 49.592000000000006 - type: precision_at_10 value: 10.088 - type: precision_at_100 value: 1.2930000000000001 - type: precision_at_1000 value: 0.13899999999999998 - type: precision_at_3 value: 25.789 - type: precision_at_5 value: 17.541999999999998 - type: recall_at_1 value: 43.8 - type: recall_at_10 value: 77.635 - type: recall_at_100 value: 93.748 - type: recall_at_1000 value: 98.468 - type: recall_at_3 value: 63.223 - type: recall_at_5 value: 70.122 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackGisRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.721 - type: map_at_10 value: 35.626999999999995 - type: map_at_100 value: 36.719 - type: map_at_1000 value: 36.8 - type: map_at_3 value: 32.781 - type: map_at_5 value: 34.333999999999996 - type: mrr_at_1 value: 29.604999999999997 - type: mrr_at_10 value: 37.564 - type: mrr_at_100 value: 38.505 - type: mrr_at_1000 value: 38.565 - type: mrr_at_3 value: 34.727000000000004 - type: mrr_at_5 value: 36.207 - type: ndcg_at_1 value: 29.604999999999997 - type: ndcg_at_10 value: 40.575 - type: ndcg_at_100 value: 45.613 - type: ndcg_at_1000 value: 47.676 - type: ndcg_at_3 value: 34.811 - type: ndcg_at_5 value: 37.491 - type: precision_at_1 value: 29.604999999999997 - type: precision_at_10 value: 6.1690000000000005 - type: precision_at_100 value: 0.906 - type: precision_at_1000 value: 0.11199999999999999 - type: precision_at_3 value: 14.237 - type: precision_at_5 value: 10.056 - type: recall_at_1 value: 27.721 - type: recall_at_10 value: 54.041 - type: recall_at_100 value: 76.62299999999999 - type: recall_at_1000 value: 92.134 - type: recall_at_3 value: 38.582 - type: recall_at_5 value: 44.989000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackMathematicaRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 16.553 - type: map_at_10 value: 25.384 - type: map_at_100 value: 26.655 - type: map_at_1000 value: 26.778000000000002 - type: map_at_3 value: 22.733 - type: map_at_5 value: 24.119 - type: mrr_at_1 value: 20.149 - type: mrr_at_10 value: 29.705 - type: mrr_at_100 value: 30.672 - type: mrr_at_1000 value: 30.737 - type: mrr_at_3 value: 27.032 - type: mrr_at_5 value: 28.369 - type: ndcg_at_1 value: 20.149 - type: ndcg_at_10 value: 30.843999999999998 - type: ndcg_at_100 value: 36.716 - type: ndcg_at_1000 value: 39.495000000000005 - type: ndcg_at_3 value: 25.918999999999997 - type: ndcg_at_5 value: 27.992 - type: precision_at_1 value: 20.149 - type: precision_at_10 value: 5.858 - type: precision_at_100 value: 1.009 - type: precision_at_1000 value: 0.13799999999999998 - type: precision_at_3 value: 12.645000000000001 - type: precision_at_5 value: 9.179 - type: recall_at_1 value: 16.553 - type: recall_at_10 value: 43.136 - type: recall_at_100 value: 68.562 - type: recall_at_1000 value: 88.208 - type: recall_at_3 value: 29.493000000000002 - type: recall_at_5 value: 34.751 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackPhysicsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.000999999999998 - type: map_at_10 value: 39.004 - type: map_at_100 value: 40.461999999999996 - type: map_at_1000 value: 40.566 - type: map_at_3 value: 35.805 - type: map_at_5 value: 37.672 - type: mrr_at_1 value: 33.782000000000004 - type: mrr_at_10 value: 44.702 - type: mrr_at_100 value: 45.528 - type: mrr_at_1000 value: 45.576 - type: mrr_at_3 value: 42.14 - type: mrr_at_5 value: 43.651 - type: ndcg_at_1 value: 33.782000000000004 - type: ndcg_at_10 value: 45.275999999999996 - type: ndcg_at_100 value: 50.888 - type: ndcg_at_1000 value: 52.879 - type: ndcg_at_3 value: 40.191 - type: ndcg_at_5 value: 42.731 - type: precision_at_1 value: 33.782000000000004 - type: precision_at_10 value: 8.200000000000001 - type: precision_at_100 value: 1.287 - type: precision_at_1000 value: 0.16199999999999998 - type: precision_at_3 value: 19.185 - type: precision_at_5 value: 13.667000000000002 - type: recall_at_1 value: 28.000999999999998 - type: recall_at_10 value: 58.131 - type: recall_at_100 value: 80.869 - type: recall_at_1000 value: 93.931 - type: recall_at_3 value: 44.161 - type: recall_at_5 value: 50.592000000000006 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackProgrammersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 28.047 - type: map_at_10 value: 38.596000000000004 - type: map_at_100 value: 40.116 - type: map_at_1000 value: 40.232 - type: map_at_3 value: 35.205 - type: map_at_5 value: 37.076 - type: mrr_at_1 value: 34.932 - type: mrr_at_10 value: 44.496 - type: mrr_at_100 value: 45.47 - type: mrr_at_1000 value: 45.519999999999996 - type: mrr_at_3 value: 41.743 - type: mrr_at_5 value: 43.352000000000004 - type: ndcg_at_1 value: 34.932 - type: ndcg_at_10 value: 44.901 - type: ndcg_at_100 value: 50.788999999999994 - type: ndcg_at_1000 value: 52.867 - type: ndcg_at_3 value: 39.449 - type: ndcg_at_5 value: 41.929 - type: precision_at_1 value: 34.932 - type: precision_at_10 value: 8.311 - type: precision_at_100 value: 1.3050000000000002 - type: precision_at_1000 value: 0.166 - type: precision_at_3 value: 18.836 - type: precision_at_5 value: 13.447000000000001 - type: recall_at_1 value: 28.047 - type: recall_at_10 value: 57.717 - type: recall_at_100 value: 82.182 - type: recall_at_1000 value: 95.82000000000001 - type: recall_at_3 value: 42.448 - type: recall_at_5 value: 49.071 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.861250000000005 - type: map_at_10 value: 37.529583333333335 - type: map_at_100 value: 38.7915 - type: map_at_1000 value: 38.90558333333335 - type: map_at_3 value: 34.57333333333333 - type: map_at_5 value: 36.187166666666656 - type: mrr_at_1 value: 32.88291666666666 - type: mrr_at_10 value: 41.79750000000001 - type: mrr_at_100 value: 42.63183333333333 - type: mrr_at_1000 value: 42.68483333333333 - type: mrr_at_3 value: 39.313750000000006 - type: mrr_at_5 value: 40.70483333333333 - type: ndcg_at_1 value: 32.88291666666666 - type: ndcg_at_10 value: 43.09408333333333 - type: ndcg_at_100 value: 48.22158333333333 - type: ndcg_at_1000 value: 50.358000000000004 - type: ndcg_at_3 value: 38.129583333333336 - type: ndcg_at_5 value: 40.39266666666666 - type: precision_at_1 value: 32.88291666666666 - type: precision_at_10 value: 7.5584999999999996 - type: precision_at_100 value: 1.1903333333333332 - type: precision_at_1000 value: 0.15658333333333332 - type: precision_at_3 value: 17.495916666666666 - type: precision_at_5 value: 12.373833333333332 - type: recall_at_1 value: 27.861250000000005 - type: recall_at_10 value: 55.215916666666665 - type: recall_at_100 value: 77.392 - type: recall_at_1000 value: 92.04908333333334 - type: recall_at_3 value: 41.37475 - type: recall_at_5 value: 47.22908333333333 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackStatsRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 25.064999999999998 - type: map_at_10 value: 31.635999999999996 - type: map_at_100 value: 32.596000000000004 - type: map_at_1000 value: 32.695 - type: map_at_3 value: 29.612 - type: map_at_5 value: 30.768 - type: mrr_at_1 value: 28.528 - type: mrr_at_10 value: 34.717 - type: mrr_at_100 value: 35.558 - type: mrr_at_1000 value: 35.626000000000005 - type: mrr_at_3 value: 32.745000000000005 - type: mrr_at_5 value: 33.819 - type: ndcg_at_1 value: 28.528 - type: ndcg_at_10 value: 35.647 - type: ndcg_at_100 value: 40.207 - type: ndcg_at_1000 value: 42.695 - type: ndcg_at_3 value: 31.878 - type: ndcg_at_5 value: 33.634 - type: precision_at_1 value: 28.528 - type: precision_at_10 value: 5.46 - type: precision_at_100 value: 0.84 - type: precision_at_1000 value: 0.11399999999999999 - type: precision_at_3 value: 13.547999999999998 - type: precision_at_5 value: 9.325 - type: recall_at_1 value: 25.064999999999998 - type: recall_at_10 value: 45.096000000000004 - type: recall_at_100 value: 65.658 - type: recall_at_1000 value: 84.128 - type: recall_at_3 value: 34.337 - type: recall_at_5 value: 38.849000000000004 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackTexRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 17.276 - type: map_at_10 value: 24.535 - type: map_at_100 value: 25.655 - type: map_at_1000 value: 25.782 - type: map_at_3 value: 22.228 - type: map_at_5 value: 23.612 - type: mrr_at_1 value: 21.266 - type: mrr_at_10 value: 28.474 - type: mrr_at_100 value: 29.398000000000003 - type: mrr_at_1000 value: 29.482000000000003 - type: mrr_at_3 value: 26.245 - type: mrr_at_5 value: 27.624 - type: ndcg_at_1 value: 21.266 - type: ndcg_at_10 value: 29.087000000000003 - type: ndcg_at_100 value: 34.374 - type: ndcg_at_1000 value: 37.433 - type: ndcg_at_3 value: 25.040000000000003 - type: ndcg_at_5 value: 27.116 - type: precision_at_1 value: 21.266 - type: precision_at_10 value: 5.258 - type: precision_at_100 value: 0.9299999999999999 - type: precision_at_1000 value: 0.13699999999999998 - type: precision_at_3 value: 11.849 - type: precision_at_5 value: 8.699 - type: recall_at_1 value: 17.276 - type: recall_at_10 value: 38.928000000000004 - type: recall_at_100 value: 62.529 - type: recall_at_1000 value: 84.44800000000001 - type: recall_at_3 value: 27.554000000000002 - type: recall_at_5 value: 32.915 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackUnixRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 27.297 - type: map_at_10 value: 36.957 - type: map_at_100 value: 38.252 - type: map_at_1000 value: 38.356 - type: map_at_3 value: 34.121 - type: map_at_5 value: 35.782000000000004 - type: mrr_at_1 value: 32.275999999999996 - type: mrr_at_10 value: 41.198 - type: mrr_at_100 value: 42.131 - type: mrr_at_1000 value: 42.186 - type: mrr_at_3 value: 38.557 - type: mrr_at_5 value: 40.12 - type: ndcg_at_1 value: 32.275999999999996 - type: ndcg_at_10 value: 42.516 - type: ndcg_at_100 value: 48.15 - type: ndcg_at_1000 value: 50.344 - type: ndcg_at_3 value: 37.423 - type: ndcg_at_5 value: 39.919 - type: precision_at_1 value: 32.275999999999996 - type: precision_at_10 value: 7.155 - type: precision_at_100 value: 1.123 - type: precision_at_1000 value: 0.14200000000000002 - type: precision_at_3 value: 17.163999999999998 - type: precision_at_5 value: 12.127 - type: recall_at_1 value: 27.297 - type: recall_at_10 value: 55.238 - type: recall_at_100 value: 79.2 - type: recall_at_1000 value: 94.258 - type: recall_at_3 value: 41.327000000000005 - type: recall_at_5 value: 47.588 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWebmastersRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 29.142000000000003 - type: map_at_10 value: 38.769 - type: map_at_100 value: 40.292 - type: map_at_1000 value: 40.510000000000005 - type: map_at_3 value: 35.39 - type: map_at_5 value: 37.009 - type: mrr_at_1 value: 34.19 - type: mrr_at_10 value: 43.418 - type: mrr_at_100 value: 44.132 - type: mrr_at_1000 value: 44.175 - type: mrr_at_3 value: 40.547 - type: mrr_at_5 value: 42.088 - type: ndcg_at_1 value: 34.19 - type: ndcg_at_10 value: 45.14 - type: ndcg_at_100 value: 50.364 - type: ndcg_at_1000 value: 52.481 - type: ndcg_at_3 value: 39.466 - type: ndcg_at_5 value: 41.772 - type: precision_at_1 value: 34.19 - type: precision_at_10 value: 8.715 - type: precision_at_100 value: 1.6150000000000002 - type: precision_at_1000 value: 0.247 - type: precision_at_3 value: 18.248 - type: precision_at_5 value: 13.161999999999999 - type: recall_at_1 value: 29.142000000000003 - type: recall_at_10 value: 57.577999999999996 - type: recall_at_100 value: 81.428 - type: recall_at_1000 value: 94.017 - type: recall_at_3 value: 41.402 - type: recall_at_5 value: 47.695 - task: type: Retrieval dataset: type: BeIR/cqadupstack name: MTEB CQADupstackWordpressRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 22.039 - type: map_at_10 value: 30.669999999999998 - type: map_at_100 value: 31.682 - type: map_at_1000 value: 31.794 - type: map_at_3 value: 28.139999999999997 - type: map_at_5 value: 29.457 - type: mrr_at_1 value: 24.399 - type: mrr_at_10 value: 32.687 - type: mrr_at_100 value: 33.622 - type: mrr_at_1000 value: 33.698 - type: mrr_at_3 value: 30.407 - type: mrr_at_5 value: 31.552999999999997 - type: ndcg_at_1 value: 24.399 - type: ndcg_at_10 value: 35.472 - type: ndcg_at_100 value: 40.455000000000005 - type: ndcg_at_1000 value: 43.15 - type: ndcg_at_3 value: 30.575000000000003 - type: ndcg_at_5 value: 32.668 - type: precision_at_1 value: 24.399 - type: precision_at_10 value: 5.656 - type: precision_at_100 value: 0.874 - type: precision_at_1000 value: 0.121 - type: precision_at_3 value: 13.062000000000001 - type: precision_at_5 value: 9.242 - type: recall_at_1 value: 22.039 - type: recall_at_10 value: 48.379 - type: recall_at_100 value: 71.11800000000001 - type: recall_at_1000 value: 91.095 - type: recall_at_3 value: 35.108 - type: recall_at_5 value: 40.015 - task: type: Retrieval dataset: type: climate-fever name: MTEB ClimateFEVER config: default split: test revision: None metrics: - type: map_at_1 value: 10.144 - type: map_at_10 value: 18.238 - type: map_at_100 value: 20.143 - type: map_at_1000 value: 20.346 - type: map_at_3 value: 14.809 - type: map_at_5 value: 16.567999999999998 - type: mrr_at_1 value: 22.671 - type: mrr_at_10 value: 34.906 - type: mrr_at_100 value: 35.858000000000004 - type: mrr_at_1000 value: 35.898 - type: mrr_at_3 value: 31.238 - type: mrr_at_5 value: 33.342 - type: ndcg_at_1 value: 22.671 - type: ndcg_at_10 value: 26.540000000000003 - type: ndcg_at_100 value: 34.138000000000005 - type: ndcg_at_1000 value: 37.72 - type: ndcg_at_3 value: 20.766000000000002 - type: ndcg_at_5 value: 22.927 - type: precision_at_1 value: 22.671 - type: precision_at_10 value: 8.619 - type: precision_at_100 value: 1.678 - type: precision_at_1000 value: 0.23500000000000001 - type: precision_at_3 value: 15.592 - type: precision_at_5 value: 12.43 - type: recall_at_1 value: 10.144 - type: recall_at_10 value: 33.46 - type: recall_at_100 value: 59.758 - type: recall_at_1000 value: 79.704 - type: recall_at_3 value: 19.604 - type: recall_at_5 value: 25.367 - task: type: Retrieval dataset: type: dbpedia-entity name: MTEB DBPedia config: default split: test revision: None metrics: - type: map_at_1 value: 8.654 - type: map_at_10 value: 18.506 - type: map_at_100 value: 26.412999999999997 - type: map_at_1000 value: 28.13 - type: map_at_3 value: 13.379 - type: map_at_5 value: 15.529000000000002 - type: mrr_at_1 value: 66 - type: mrr_at_10 value: 74.13 - type: mrr_at_100 value: 74.48700000000001 - type: mrr_at_1000 value: 74.49799999999999 - type: mrr_at_3 value: 72.75 - type: mrr_at_5 value: 73.762 - type: ndcg_at_1 value: 54.50000000000001 - type: ndcg_at_10 value: 40.236 - type: ndcg_at_100 value: 44.690999999999995 - type: ndcg_at_1000 value: 52.195 - type: ndcg_at_3 value: 45.632 - type: ndcg_at_5 value: 42.952 - type: precision_at_1 value: 66 - type: precision_at_10 value: 31.724999999999998 - type: precision_at_100 value: 10.299999999999999 - type: precision_at_1000 value: 2.194 - type: precision_at_3 value: 48.75 - type: precision_at_5 value: 41.6 - type: recall_at_1 value: 8.654 - type: recall_at_10 value: 23.74 - type: recall_at_100 value: 50.346999999999994 - type: recall_at_1000 value: 74.376 - type: recall_at_3 value: 14.636 - type: recall_at_5 value: 18.009 - task: type: Classification dataset: type: mteb/emotion name: MTEB EmotionClassification config: default split: test revision: 4f58c6b202a23cf9a4da393831edf4f9183cad37 metrics: - type: accuracy value: 53.245 - type: f1 value: 48.74520523753552 - task: type: Retrieval dataset: type: fever name: MTEB FEVER config: default split: test revision: None metrics: - type: map_at_1 value: 51.729 - type: map_at_10 value: 63.904 - type: map_at_100 value: 64.363 - type: map_at_1000 value: 64.38199999999999 - type: map_at_3 value: 61.393 - type: map_at_5 value: 63.02100000000001 - type: mrr_at_1 value: 55.686 - type: mrr_at_10 value: 67.804 - type: mrr_at_100 value: 68.15299999999999 - type: mrr_at_1000 value: 68.161 - type: mrr_at_3 value: 65.494 - type: mrr_at_5 value: 67.01599999999999 - type: ndcg_at_1 value: 55.686 - type: ndcg_at_10 value: 70.025 - type: ndcg_at_100 value: 72.011 - type: ndcg_at_1000 value: 72.443 - type: ndcg_at_3 value: 65.32900000000001 - type: ndcg_at_5 value: 68.05600000000001 - type: precision_at_1 value: 55.686 - type: precision_at_10 value: 9.358 - type: precision_at_100 value: 1.05 - type: precision_at_1000 value: 0.11 - type: precision_at_3 value: 26.318 - type: precision_at_5 value: 17.321 - type: recall_at_1 value: 51.729 - type: recall_at_10 value: 85.04 - type: recall_at_100 value: 93.777 - type: recall_at_1000 value: 96.824 - type: recall_at_3 value: 72.521 - type: recall_at_5 value: 79.148 - task: type: Retrieval dataset: type: fiqa name: MTEB FiQA2018 config: default split: test revision: None metrics: - type: map_at_1 value: 23.765 - type: map_at_10 value: 39.114 - type: map_at_100 value: 40.987 - type: map_at_1000 value: 41.155 - type: map_at_3 value: 34.028000000000006 - type: map_at_5 value: 36.925000000000004 - type: mrr_at_1 value: 46.451 - type: mrr_at_10 value: 54.711 - type: mrr_at_100 value: 55.509 - type: mrr_at_1000 value: 55.535000000000004 - type: mrr_at_3 value: 52.649 - type: mrr_at_5 value: 53.729000000000006 - type: ndcg_at_1 value: 46.451 - type: ndcg_at_10 value: 46.955999999999996 - type: ndcg_at_100 value: 53.686 - type: ndcg_at_1000 value: 56.230000000000004 - type: ndcg_at_3 value: 43.374 - type: ndcg_at_5 value: 44.372 - type: precision_at_1 value: 46.451 - type: precision_at_10 value: 13.256 - type: precision_at_100 value: 2.019 - type: precision_at_1000 value: 0.247 - type: precision_at_3 value: 29.115000000000002 - type: precision_at_5 value: 21.389 - type: recall_at_1 value: 23.765 - type: recall_at_10 value: 53.452999999999996 - type: recall_at_100 value: 78.828 - type: recall_at_1000 value: 93.938 - type: recall_at_3 value: 39.023 - type: recall_at_5 value: 45.18 - task: type: Retrieval dataset: type: hotpotqa name: MTEB HotpotQA config: default split: test revision: None metrics: - type: map_at_1 value: 31.918000000000003 - type: map_at_10 value: 46.741 - type: map_at_100 value: 47.762 - type: map_at_1000 value: 47.849000000000004 - type: map_at_3 value: 43.578 - type: map_at_5 value: 45.395 - type: mrr_at_1 value: 63.834999999999994 - type: mrr_at_10 value: 71.312 - type: mrr_at_100 value: 71.695 - type: mrr_at_1000 value: 71.714 - type: mrr_at_3 value: 69.82000000000001 - type: mrr_at_5 value: 70.726 - type: ndcg_at_1 value: 63.834999999999994 - type: ndcg_at_10 value: 55.879999999999995 - type: ndcg_at_100 value: 59.723000000000006 - type: ndcg_at_1000 value: 61.49400000000001 - type: ndcg_at_3 value: 50.964 - type: ndcg_at_5 value: 53.47 - type: precision_at_1 value: 63.834999999999994 - type: precision_at_10 value: 11.845 - type: precision_at_100 value: 1.4869999999999999 - type: precision_at_1000 value: 0.172 - type: precision_at_3 value: 32.158 - type: precision_at_5 value: 21.278 - type: recall_at_1 value: 31.918000000000003 - type: recall_at_10 value: 59.223000000000006 - type: recall_at_100 value: 74.328 - type: recall_at_1000 value: 86.05000000000001 - type: recall_at_3 value: 48.238 - type: recall_at_5 value: 53.193999999999996 - task: type: Classification dataset: type: mteb/imdb name: MTEB ImdbClassification config: default split: test revision: 3d86128a09e091d6018b6d26cad27f2739fc2db7 metrics: - type: accuracy value: 79.7896 - type: ap value: 73.65166029460288 - type: f1 value: 79.71794693711813 - task: type: Retrieval dataset: type: msmarco name: MTEB MSMARCO config: default split: dev revision: None metrics: - type: map_at_1 value: 22.239 - type: map_at_10 value: 34.542 - type: map_at_100 value: 35.717999999999996 - type: map_at_1000 value: 35.764 - type: map_at_3 value: 30.432 - type: map_at_5 value: 32.81 - type: mrr_at_1 value: 22.908 - type: mrr_at_10 value: 35.127 - type: mrr_at_100 value: 36.238 - type: mrr_at_1000 value: 36.278 - type: mrr_at_3 value: 31.076999999999998 - type: mrr_at_5 value: 33.419 - type: ndcg_at_1 value: 22.908 - type: ndcg_at_10 value: 41.607 - type: ndcg_at_100 value: 47.28 - type: ndcg_at_1000 value: 48.414 - type: ndcg_at_3 value: 33.253 - type: ndcg_at_5 value: 37.486000000000004 - type: precision_at_1 value: 22.908 - type: precision_at_10 value: 6.645 - type: precision_at_100 value: 0.9490000000000001 - type: precision_at_1000 value: 0.105 - type: precision_at_3 value: 14.130999999999998 - type: precision_at_5 value: 10.616 - type: recall_at_1 value: 22.239 - type: recall_at_10 value: 63.42 - type: recall_at_100 value: 89.696 - type: recall_at_1000 value: 98.351 - type: recall_at_3 value: 40.77 - type: recall_at_5 value: 50.93 - task: type: Classification dataset: type: mteb/mtop_domain name: MTEB MTOPDomainClassification (en) config: en split: test revision: d80d48c1eb48d3562165c59d59d0034df9fff0bf metrics: - type: accuracy value: 95.06839945280439 - type: f1 value: 94.74276398224072 - task: type: Classification dataset: type: mteb/mtop_intent name: MTEB MTOPIntentClassification (en) config: en split: test revision: ae001d0e6b1228650b7bd1c2c65fb50ad11a8aba metrics: - type: accuracy value: 72.25718194254446 - type: f1 value: 53.91164489161391 - task: type: Classification dataset: type: mteb/amazon_massive_intent name: MTEB MassiveIntentClassification (en) config: en split: test revision: 31efe3c427b0bae9c22cbb560b8f15491cc6bed7 metrics: - type: accuracy value: 71.47948890383323 - type: f1 value: 69.98520247230257 - task: type: Classification dataset: type: mteb/amazon_massive_scenario name: MTEB MassiveScenarioClassification (en) config: en split: test revision: 7d571f92784cd94a019292a1f45445077d0ef634 metrics: - type: accuracy value: 76.46603900470748 - type: f1 value: 76.44111526065399 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-p2p name: MTEB MedrxivClusteringP2P config: default split: test revision: e7a26af6f3ae46b30dde8737f02c07b1505bcc73 metrics: - type: v_measure value: 33.19106070798198 - task: type: Clustering dataset: type: mteb/medrxiv-clustering-s2s name: MTEB MedrxivClusteringS2S config: default split: test revision: 35191c8c0dca72d8ff3efcd72aa802307d469663 metrics: - type: v_measure value: 30.78772205248094 - task: type: Reranking dataset: type: mteb/mind_small name: MTEB MindSmallReranking config: default split: test revision: 3bdac13927fdc888b903db93b2ffdbd90b295a69 metrics: - type: map value: 31.811231631488507 - type: mrr value: 32.98200485378021 - task: type: Retrieval dataset: type: nfcorpus name: MTEB NFCorpus config: default split: test revision: None metrics: - type: map_at_1 value: 6.9 - type: map_at_10 value: 13.703000000000001 - type: map_at_100 value: 17.251 - type: map_at_1000 value: 18.795 - type: map_at_3 value: 10.366999999999999 - type: map_at_5 value: 11.675 - type: mrr_at_1 value: 47.059 - type: mrr_at_10 value: 55.816 - type: mrr_at_100 value: 56.434 - type: mrr_at_1000 value: 56.467 - type: mrr_at_3 value: 53.973000000000006 - type: mrr_at_5 value: 55.257999999999996 - type: ndcg_at_1 value: 44.737 - type: ndcg_at_10 value: 35.997 - type: ndcg_at_100 value: 33.487 - type: ndcg_at_1000 value: 41.897 - type: ndcg_at_3 value: 41.18 - type: ndcg_at_5 value: 38.721 - type: precision_at_1 value: 46.129999999999995 - type: precision_at_10 value: 26.533 - type: precision_at_100 value: 8.706 - type: precision_at_1000 value: 2.16 - type: precision_at_3 value: 38.493 - type: precision_at_5 value: 33.189 - type: recall_at_1 value: 6.9 - type: recall_at_10 value: 17.488999999999997 - type: recall_at_100 value: 34.583000000000006 - type: recall_at_1000 value: 64.942 - type: recall_at_3 value: 11.494 - type: recall_at_5 value: 13.496 - task: type: Retrieval dataset: type: nq name: MTEB NQ config: default split: test revision: None metrics: - type: map_at_1 value: 33.028999999999996 - type: map_at_10 value: 49.307 - type: map_at_100 value: 50.205 - type: map_at_1000 value: 50.23 - type: map_at_3 value: 44.782 - type: map_at_5 value: 47.599999999999994 - type: mrr_at_1 value: 37.108999999999995 - type: mrr_at_10 value: 51.742999999999995 - type: mrr_at_100 value: 52.405 - type: mrr_at_1000 value: 52.422000000000004 - type: mrr_at_3 value: 48.087999999999994 - type: mrr_at_5 value: 50.414 - type: ndcg_at_1 value: 37.08 - type: ndcg_at_10 value: 57.236 - type: ndcg_at_100 value: 60.931999999999995 - type: ndcg_at_1000 value: 61.522 - type: ndcg_at_3 value: 48.93 - type: ndcg_at_5 value: 53.561 - type: precision_at_1 value: 37.08 - type: precision_at_10 value: 9.386 - type: precision_at_100 value: 1.1480000000000001 - type: precision_at_1000 value: 0.12 - type: precision_at_3 value: 22.258 - type: precision_at_5 value: 16.025 - type: recall_at_1 value: 33.028999999999996 - type: recall_at_10 value: 78.805 - type: recall_at_100 value: 94.643 - type: recall_at_1000 value: 99.039 - type: recall_at_3 value: 57.602 - type: recall_at_5 value: 68.253 - task: type: Retrieval dataset: type: quora name: MTEB QuoraRetrieval config: default split: test revision: None metrics: - type: map_at_1 value: 71.122 - type: map_at_10 value: 85.237 - type: map_at_100 value: 85.872 - type: map_at_1000 value: 85.885 - type: map_at_3 value: 82.27499999999999 - type: map_at_5 value: 84.13199999999999 - type: mrr_at_1 value: 81.73 - type: mrr_at_10 value: 87.834 - type: mrr_at_100 value: 87.92 - type: mrr_at_1000 value: 87.921 - type: mrr_at_3 value: 86.878 - type: mrr_at_5 value: 87.512 - type: ndcg_at_1 value: 81.73 - type: ndcg_at_10 value: 88.85499999999999 - type: ndcg_at_100 value: 89.992 - type: ndcg_at_1000 value: 90.07 - type: ndcg_at_3 value: 85.997 - type: ndcg_at_5 value: 87.55199999999999 - type: precision_at_1 value: 81.73 - type: precision_at_10 value: 13.491 - type: precision_at_100 value: 1.536 - type: precision_at_1000 value: 0.157 - type: precision_at_3 value: 37.623 - type: precision_at_5 value: 24.742 - type: recall_at_1 value: 71.122 - type: recall_at_10 value: 95.935 - type: recall_at_100 value: 99.657 - type: recall_at_1000 value: 99.996 - type: recall_at_3 value: 87.80799999999999 - type: recall_at_5 value: 92.161 - task: type: Clustering dataset: type: mteb/reddit-clustering name: MTEB RedditClustering config: default split: test revision: 24640382cdbf8abc73003fb0fa6d111a705499eb metrics: - type: v_measure value: 63.490029238193756 - task: type: Clustering dataset: type: mteb/reddit-clustering-p2p name: MTEB RedditClusteringP2P config: default split: test revision: 282350215ef01743dc01b456c7f5241fa8937f16 metrics: - type: v_measure value: 65.13153408508836 - task: type: Retrieval dataset: type: scidocs name: MTEB SCIDOCS config: default split: test revision: None metrics: - type: map_at_1 value: 4.202999999999999 - type: map_at_10 value: 10.174 - type: map_at_100 value: 12.138 - type: map_at_1000 value: 12.418 - type: map_at_3 value: 7.379 - type: map_at_5 value: 8.727 - type: mrr_at_1 value: 20.7 - type: mrr_at_10 value: 30.389 - type: mrr_at_100 value: 31.566 - type: mrr_at_1000 value: 31.637999999999998 - type: mrr_at_3 value: 27.133000000000003 - type: mrr_at_5 value: 29.078 - type: ndcg_at_1 value: 20.7 - type: ndcg_at_10 value: 17.355999999999998 - type: ndcg_at_100 value: 25.151 - type: ndcg_at_1000 value: 30.37 - type: ndcg_at_3 value: 16.528000000000002 - type: ndcg_at_5 value: 14.396999999999998 - type: precision_at_1 value: 20.7 - type: precision_at_10 value: 8.98 - type: precision_at_100 value: 2.015 - type: precision_at_1000 value: 0.327 - type: precision_at_3 value: 15.367 - type: precision_at_5 value: 12.559999999999999 - type: recall_at_1 value: 4.202999999999999 - type: recall_at_10 value: 18.197 - type: recall_at_100 value: 40.903 - type: recall_at_1000 value: 66.427 - type: recall_at_3 value: 9.362 - type: recall_at_5 value: 12.747 - task: type: STS dataset: type: mteb/sickr-sts name: MTEB SICK-R config: default split: test revision: a6ea5a8cab320b040a23452cc28066d9beae2cee metrics: - type: cos_sim_spearman value: 81.69890989765257 - task: type: STS dataset: type: mteb/sts12-sts name: MTEB STS12 config: default split: test revision: a0d554a64d88156834ff5ae9920b964011b16384 metrics: - type: cos_sim_spearman value: 75.31953790551489 - task: type: STS dataset: type: mteb/sts13-sts name: MTEB STS13 config: default split: test revision: 7e90230a92c190f1bf69ae9002b8cea547a64cca metrics: - type: cos_sim_spearman value: 87.44050861280759 - task: type: STS dataset: type: mteb/sts14-sts name: MTEB STS14 config: default split: test revision: 6031580fec1f6af667f0bd2da0a551cf4f0b2375 metrics: - type: cos_sim_spearman value: 81.86922869270393 - task: type: STS dataset: type: mteb/sts15-sts name: MTEB STS15 config: default split: test revision: ae752c7c21bf194d8b67fd573edf7ae58183cbe3 metrics: - type: cos_sim_spearman value: 88.9399170304284 - task: type: STS dataset: type: mteb/sts16-sts name: MTEB STS16 config: default split: test revision: 4d8694f8f0e0100860b497b999b3dbed754a0513 metrics: - type: cos_sim_spearman value: 85.38015314088582 - task: type: STS dataset: type: mteb/sts17-crosslingual-sts name: MTEB STS17 (en-en) config: en-en split: test revision: af5e6fb845001ecf41f4c1e033ce921939a2a68d metrics: - type: cos_sim_spearman value: 90.53653527788835 - task: type: STS dataset: type: mteb/sts22-crosslingual-sts name: MTEB STS22 (en) config: en split: test revision: 6d1ba47164174a496b7fa5d3569dae26a6813b80 metrics: - type: cos_sim_spearman value: 68.64526474250209 - task: type: STS dataset: type: mteb/stsbenchmark-sts name: MTEB STSBenchmark config: default split: test revision: b0fddb56ed78048fa8b90373c8a3cfc37b684831 metrics: - type: cos_sim_spearman value: 86.56156983963042 - task: type: Reranking dataset: type: mteb/scidocs-reranking name: MTEB SciDocsRR config: default split: test revision: d3c5e1fc0b855ab6097bf1cda04dd73947d7caab metrics: - type: map value: 79.48610254648003 - type: mrr value: 94.02481505422682 - task: type: Retrieval dataset: type: scifact name: MTEB SciFact config: default split: test revision: None metrics: - type: map_at_1 value: 48.983 - type: map_at_10 value: 59.077999999999996 - type: map_at_100 value: 59.536 - type: map_at_1000 value: 59.575 - type: map_at_3 value: 55.691 - type: map_at_5 value: 57.410000000000004 - type: mrr_at_1 value: 51.666999999999994 - type: mrr_at_10 value: 60.427 - type: mrr_at_100 value: 60.763 - type: mrr_at_1000 value: 60.79900000000001 - type: mrr_at_3 value: 57.556 - type: mrr_at_5 value: 59.089000000000006 - type: ndcg_at_1 value: 51.666999999999994 - type: ndcg_at_10 value: 64.559 - type: ndcg_at_100 value: 66.58 - type: ndcg_at_1000 value: 67.64 - type: ndcg_at_3 value: 58.287 - type: ndcg_at_5 value: 61.001000000000005 - type: precision_at_1 value: 51.666999999999994 - type: precision_at_10 value: 9.067 - type: precision_at_100 value: 1.0170000000000001 - type: precision_at_1000 value: 0.11100000000000002 - type: precision_at_3 value: 23 - type: precision_at_5 value: 15.6 - type: recall_at_1 value: 48.983 - type: recall_at_10 value: 80.289 - type: recall_at_100 value: 89.43299999999999 - type: recall_at_1000 value: 97.667 - type: recall_at_3 value: 62.978 - type: recall_at_5 value: 69.872 - task: type: PairClassification dataset: type: mteb/sprintduplicatequestions-pairclassification name: MTEB SprintDuplicateQuestions config: default split: test revision: d66bd1f72af766a5cc4b0ca5e00c162f89e8cc46 metrics: - type: cos_sim_accuracy value: 99.79009900990098 - type: cos_sim_ap value: 94.94115052608419 - type: cos_sim_f1 value: 89.1260162601626 - type: cos_sim_precision value: 90.599173553719 - type: cos_sim_recall value: 87.7 - type: dot_accuracy value: 99.79009900990098 - type: dot_ap value: 94.94115052608419 - type: dot_f1 value: 89.1260162601626 - type: dot_precision value: 90.599173553719 - type: dot_recall value: 87.7 - type: euclidean_accuracy value: 99.79009900990098 - type: euclidean_ap value: 94.94115052608419 - type: euclidean_f1 value: 89.1260162601626 - type: euclidean_precision value: 90.599173553719 - type: euclidean_recall value: 87.7 - type: manhattan_accuracy value: 99.7940594059406 - type: manhattan_ap value: 94.95271414642431 - type: manhattan_f1 value: 89.24508790072387 - type: manhattan_precision value: 92.3982869379015 - type: manhattan_recall value: 86.3 - type: max_accuracy value: 99.7940594059406 - type: max_ap value: 94.95271414642431 - type: max_f1 value: 89.24508790072387 - task: type: Clustering dataset: type: mteb/stackexchange-clustering name: MTEB StackExchangeClustering config: default split: test revision: 6cbc1f7b2bc0622f2e39d2c77fa502909748c259 metrics: - type: v_measure value: 68.43866571935851 - task: type: Clustering dataset: type: mteb/stackexchange-clustering-p2p name: MTEB StackExchangeClusteringP2P config: default split: test revision: 815ca46b2622cec33ccafc3735d572c266efdb44 metrics: - type: v_measure value: 35.16579026551532 - task: type: Reranking dataset: type: mteb/stackoverflowdupquestions-reranking name: MTEB StackOverflowDupQuestions config: default split: test revision: e185fbe320c72810689fc5848eb6114e1ef5ec69 metrics: - type: map value: 52.518952473513934 - type: mrr value: 53.292457134368895 - task: type: Summarization dataset: type: mteb/summeval name: MTEB SummEval config: default split: test revision: cda12ad7615edc362dbf25a00fdd61d3b1eaf93c metrics: - type: cos_sim_pearson value: 31.12529588316604 - type: cos_sim_spearman value: 32.31662126895294 - type: dot_pearson value: 31.125303796647056 - type: dot_spearman value: 32.31662126895294 - task: type: Retrieval dataset: type: trec-covid name: MTEB TRECCOVID config: default split: test revision: None metrics: - type: map_at_1 value: 0.219 - type: map_at_10 value: 1.7469999999999999 - type: map_at_100 value: 10.177999999999999 - type: map_at_1000 value: 26.108999999999998 - type: map_at_3 value: 0.64 - type: map_at_5 value: 0.968 - type: mrr_at_1 value: 82 - type: mrr_at_10 value: 89.067 - type: mrr_at_100 value: 89.067 - type: mrr_at_1000 value: 89.067 - type: mrr_at_3 value: 88.333 - type: mrr_at_5 value: 88.73299999999999 - type: ndcg_at_1 value: 78 - type: ndcg_at_10 value: 71.398 - type: ndcg_at_100 value: 55.574999999999996 - type: ndcg_at_1000 value: 51.771 - type: ndcg_at_3 value: 77.765 - type: ndcg_at_5 value: 73.614 - type: precision_at_1 value: 82 - type: precision_at_10 value: 75.4 - type: precision_at_100 value: 58.040000000000006 - type: precision_at_1000 value: 23.516000000000002 - type: precision_at_3 value: 84 - type: precision_at_5 value: 78.4 - type: recall_at_1 value: 0.219 - type: recall_at_10 value: 1.958 - type: recall_at_100 value: 13.797999999999998 - type: recall_at_1000 value: 49.881 - type: recall_at_3 value: 0.672 - type: recall_at_5 value: 1.0370000000000001 - task: type: Retrieval dataset: type: webis-touche2020 name: MTEB Touche2020 config: default split: test revision: None metrics: - type: map_at_1 value: 1.8610000000000002 - type: map_at_10 value: 8.705 - type: map_at_100 value: 15.164 - type: map_at_1000 value: 16.78 - type: map_at_3 value: 4.346 - type: map_at_5 value: 6.151 - type: mrr_at_1 value: 22.448999999999998 - type: mrr_at_10 value: 41.556 - type: mrr_at_100 value: 42.484 - type: mrr_at_1000 value: 42.494 - type: mrr_at_3 value: 37.755 - type: mrr_at_5 value: 40.102 - type: ndcg_at_1 value: 21.429000000000002 - type: ndcg_at_10 value: 23.439 - type: ndcg_at_100 value: 36.948 - type: ndcg_at_1000 value: 48.408 - type: ndcg_at_3 value: 22.261 - type: ndcg_at_5 value: 23.085 - type: precision_at_1 value: 22.448999999999998 - type: precision_at_10 value: 21.633 - type: precision_at_100 value: 8.02 - type: precision_at_1000 value: 1.5939999999999999 - type: precision_at_3 value: 23.810000000000002 - type: precision_at_5 value: 24.490000000000002 - type: recall_at_1 value: 1.8610000000000002 - type: recall_at_10 value: 15.876000000000001 - type: recall_at_100 value: 50.300999999999995 - type: recall_at_1000 value: 86.098 - type: recall_at_3 value: 5.892 - type: recall_at_5 value: 9.443 - task: type: Classification dataset: type: mteb/toxic_conversations_50k name: MTEB ToxicConversationsClassification config: default split: test revision: d7c0de2777da35d6aae2200a62c6e0e5af397c4c metrics: - type: accuracy value: 70.3264 - type: ap value: 13.249577616243794 - type: f1 value: 53.621518367695685 - task: type: Classification dataset: type: mteb/tweet_sentiment_extraction name: MTEB TweetSentimentExtractionClassification config: default split: test revision: d604517c81ca91fe16a244d1248fc021f9ecee7a metrics: - type: accuracy value: 61.57611771363894 - type: f1 value: 61.79797478568639 - task: type: Clustering dataset: type: mteb/twentynewsgroups-clustering name: MTEB TwentyNewsgroupsClustering config: default split: test revision: 6125ec4e24fa026cec8a478383ee943acfbd5449 metrics: - type: v_measure value: 53.38315344479284 - task: type: PairClassification dataset: type: mteb/twittersemeval2015-pairclassification name: MTEB TwitterSemEval2015 config: default split: test revision: 70970daeab8776df92f5ea462b6173c0b46fd2d1 metrics: - type: cos_sim_accuracy value: 87.55438993860642 - type: cos_sim_ap value: 77.98702600017738 - type: cos_sim_f1 value: 71.94971653931476 - type: cos_sim_precision value: 67.50693802035153 - type: cos_sim_recall value: 77.01846965699208 - type: dot_accuracy value: 87.55438993860642 - type: dot_ap value: 77.98702925907986 - type: dot_f1 value: 71.94971653931476 - type: dot_precision value: 67.50693802035153 - type: dot_recall value: 77.01846965699208 - type: euclidean_accuracy value: 87.55438993860642 - type: euclidean_ap value: 77.98702951957925 - type: euclidean_f1 value: 71.94971653931476 - type: euclidean_precision value: 67.50693802035153 - type: euclidean_recall value: 77.01846965699208 - type: manhattan_accuracy value: 87.54246885617214 - type: manhattan_ap value: 77.95531413902947 - type: manhattan_f1 value: 71.93605683836589 - type: manhattan_precision value: 69.28152492668622 - type: manhattan_recall value: 74.80211081794195 - type: max_accuracy value: 87.55438993860642 - type: max_ap value: 77.98702951957925 - type: max_f1 value: 71.94971653931476 - task: type: PairClassification dataset: type: mteb/twitterurlcorpus-pairclassification name: MTEB TwitterURLCorpus config: default split: test revision: 8b6510b0b1fa4e4c4f879467980e9be563ec1cdf metrics: - type: cos_sim_accuracy value: 89.47296930182016 - type: cos_sim_ap value: 86.92853616302108 - type: cos_sim_f1 value: 79.35138351681047 - type: cos_sim_precision value: 76.74820143884892 - type: cos_sim_recall value: 82.13735756082538 - type: dot_accuracy value: 89.47296930182016 - type: dot_ap value: 86.92854339601595 - type: dot_f1 value: 79.35138351681047 - type: dot_precision value: 76.74820143884892 - type: dot_recall value: 82.13735756082538 - type: euclidean_accuracy value: 89.47296930182016 - type: euclidean_ap value: 86.92854191061649 - type: euclidean_f1 value: 79.35138351681047 - type: euclidean_precision value: 76.74820143884892 - type: euclidean_recall value: 82.13735756082538 - type: manhattan_accuracy value: 89.47685023479644 - type: manhattan_ap value: 86.90063722679578 - type: manhattan_f1 value: 79.30753865502702 - type: manhattan_precision value: 76.32066068631639 - type: manhattan_recall value: 82.53772713273791 - type: max_accuracy value: 89.47685023479644 - type: max_ap value: 86.92854339601595 - type: max_f1 value: 79.35138351681047 duplicated_from: hkunlp/instructor-xl --- # hkunlp/instructor-xl We introduce **Instructor**👨‍🏫, an instruction-finetuned text embedding model that can generate text embeddings tailored to any task (e.g., classification, retrieval, clustering, text evaluation, etc.) and domains (e.g., science, finance, etc.) ***by simply providing the task instruction, without any finetuning***. Instructor👨‍ achieves sota on 70 diverse embedding tasks! The model is easy to use with **our customized** `sentence-transformer` library. For more details, check out [our paper](https://arxiv.org/abs/2212.09741) and [project page](https://instructor-embedding.github.io/)! **************************** **Updates** **************************** * 01/21: We released a new [checkpoint](https://huggingface.co/hkunlp/instructor-xl) trained with hard negatives, which gives better performance. * 12/21: We released our [paper](https://arxiv.org/abs/2212.09741), [code](https://github.com/HKUNLP/instructor-embedding), [checkpoint](https://huggingface.co/hkunlp/instructor-xl) and [project page](https://instructor-embedding.github.io/)! Check them out! ## Quick start