--- library_name: transformers language: - wo license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - IndabaxSenegal/asr-wolof-dataset metrics: - wer model-index: - name: Whisper small Wolof results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: ASR Wolof Dataset type: IndabaxSenegal/asr-wolof-dataset args: 'config: wo, split: test' metrics: - name: Wer type: wer value: 51.21087255114581 --- # Whisper small Wolof This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the ASR Wolof Dataset dataset. It achieves the following results on the evaluation set: - Loss: 1.1760 - Wer: 51.2109 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - gradient_accumulation_steps: 2 - total_train_batch_size: 32 - optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: cosine - num_epochs: 2 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:-----:|:----:|:---------------:|:-------:| | 0.0367 | 1.0 | 450 | 1.1685 | 50.4807 | | 0.0191 | 2.0 | 900 | 1.1760 | 51.2109 | ### Framework versions - Transformers 4.46.3 - Pytorch 2.4.0 - Datasets 3.1.0 - Tokenizers 0.20.0