--- library_name: transformers license: other base_model: apple/mobilevitv2-1.0-imagenet1k-256 tags: - generated_from_trainer metrics: - accuracy - f1 - recall - precision model-index: - name: mobilevitv2_Liveness_detection_v1.0 results: [] --- [Visualize in Weights & Biases](https://wandb.ai/nguyenkhoaht002/liveness_detection/runs/uhi1thq6) # mobilevitv2_Liveness_detection_v1.0 This model is a fine-tuned version of [apple/mobilevitv2-1.0-imagenet1k-256](https://huggingface.co/apple/mobilevitv2-1.0-imagenet1k-256) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0046 - Accuracy: 0.9988 - F1: 0.9988 - Recall: 0.9988 - Precision: 0.9988 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 128 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Recall | Precision | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:|:------:|:---------:| | 0.1093 | 0.2048 | 128 | 0.0679 | 0.9929 | 0.9929 | 0.9929 | 0.9929 | | 0.0234 | 0.4096 | 256 | 0.0170 | 0.9962 | 0.9962 | 0.9962 | 0.9962 | | 0.0186 | 0.6144 | 384 | 0.0131 | 0.9973 | 0.9973 | 0.9973 | 0.9973 | | 0.0068 | 0.8192 | 512 | 0.0089 | 0.9980 | 0.9981 | 0.9980 | 0.9980 | | 0.0049 | 1.024 | 640 | 0.0067 | 0.9985 | 0.9985 | 0.9985 | 0.9985 | | 0.0113 | 1.2288 | 768 | 0.0064 | 0.9983 | 0.9984 | 0.9983 | 0.9983 | | 0.0061 | 1.4336 | 896 | 0.0060 | 0.9983 | 0.9983 | 0.9983 | 0.9984 | | 0.0025 | 1.6384 | 1024 | 0.0058 | 0.9983 | 0.9983 | 0.9983 | 0.9984 | | 0.0019 | 1.8432 | 1152 | 0.0053 | 0.9987 | 0.9986 | 0.9987 | 0.9987 | | 0.0056 | 2.048 | 1280 | 0.0051 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | | 0.0015 | 2.2528 | 1408 | 0.0050 | 0.9987 | 0.9987 | 0.9987 | 0.9987 | | 0.0055 | 2.4576 | 1536 | 0.0049 | 0.9988 | 0.9987 | 0.9988 | 0.9988 | | 0.0023 | 2.6624 | 1664 | 0.0049 | 0.9989 | 0.9988 | 0.9989 | 0.9989 | | 0.0027 | 2.8672 | 1792 | 0.0046 | 0.9988 | 0.9988 | 0.9988 | 0.9988 | ### Framework versions - Transformers 4.44.2 - Pytorch 2.4.1+cu121 - Datasets 3.2.0 - Tokenizers 0.19.1