--- language: vi datasets: - youtube-vi-13k-hours tags: - speech license: cc-by-nc-4.0 --- # Vietnamese Self-Supervised Learning Wav2Vec2 model ## Model We use wav2vec2 architecture for doing Self-Supervised learning ## Data Our self-supervised model is pre-trained on a massive audio set of 13k hours of Vietnamese youtube audio, which includes: - Clean audio - Noise audio - Conversation - Multi-gender and dialects ## Download We have already upload our pre-trained model to the Huggingface. The base model trained 35 epochs and the large model trained 20 epochs in about 30 days using TPU V3-8. - [Based version](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vi) ~ 95M params - [Large version](https://huggingface.co/nguyenvulebinh/wav2vec2-large-vi) ~ 317M params ## Usage ```python from transformers import Wav2Vec2ForPreTraining, Wav2Vec2Processor model_name = 'nguyenvulebinh/wav2vec2-base-vi' # model_name = 'nguyenvulebinh/wav2vec2-large-vi' model = Wav2Vec2ForPreTraining.from_pretrained(model_name) processor = Wav2Vec2Processor.from_pretrained(model_name) ``` Since our model has the same architecture as the English wav2vec2 version, you can use [this notebook](https://colab.research.google.com/drive/1FjTsqbYKphl9kL-eILgUc-bl4zVThL8F?usp=sharing) for more information on how to fine-tune the model. ## Finetuned version ### VLSP 2020 ASR dataset Benchmark WER result on VLSP T1 testset: | | [base model](https://huggingface.co/nguyenvulebinh/wav2vec2-base-vi-vlsp2020) | [large model](https://huggingface.co/nguyenvulebinh/wav2vec2-large-vi-vlsp2020) | |---|---|---| |without LM| 8.66 | 6.90 | |with 5-grams LM| 6.53 | 5.32 | Usage ```python #pytorch #!pip install transformers==4.20.0 #!pip install https://github.com/kpu/kenlm/archive/master.zip #!pip install pyctcdecode==0.4.0 from transformers.file_utils import cached_path, hf_bucket_url from importlib.machinery import SourceFileLoader from transformers import Wav2Vec2ProcessorWithLM from IPython.lib.display import Audio import torchaudio import torch # Load model & processor model_name = "nguyenvulebinh/wav2vec2-base-vi-vlsp2020" # model_name = "nguyenvulebinh/wav2vec2-large-vi-vlsp2020" model = SourceFileLoader("model", cached_path(hf_bucket_url(model_name,filename="model_handling.py"))).load_module().Wav2Vec2ForCTC.from_pretrained(model_name) processor = Wav2Vec2ProcessorWithLM.from_pretrained(model_name) # Load an example audio (16k) audio, sample_rate = torchaudio.load(cached_path(hf_bucket_url(model_name, filename="t2_0000006682.wav"))) input_data = processor.feature_extractor(audio[0], sampling_rate=16000, return_tensors='pt') # Infer output = model(**input_data) # Output transcript without LM print(processor.tokenizer.decode(output.logits.argmax(dim=-1)[0].detach().cpu().numpy())) # Output transcript with LM print(processor.decode(output.logits.cpu().detach().numpy()[0], beam_width=100).text) ``` ## Acknowledgment - We would like to thank the Google TPU Research Cloud (TRC) program and Soonson Kwon (Google ML Ecosystem programs Lead) for their support. - Special thanks to my colleagues at [VietAI](https://vietai.org/) and [VAIS](https://vais.vn/) for their advice. ## Contact nguyenvulebinh@gmail.com / binh@vietai.org [![Follow](https://img.shields.io/twitter/follow/nguyenvulebinh?style=social)](https://twitter.com/intent/follow?screen_name=nguyenvulebinh)