--- license: apache-2.0 datasets: - ruanchaves/faquad-nli language: - pt metrics: - accuracy library_name: transformers pipeline_tag: text-classification tags: - textual-entailment widget: - text: "Qual a capital do Brasil?A capital do Brasil é Brasília!" example_title: Exemplo - text: "Qual a capital do Brasil?Anões são muito mais legais do que elfos!" example_title: Exemplo --- # TeenyTinyLlama-162m-FAQUAD TeenyTinyLlama is a series of small foundational models trained on Portuguese. This repository contains a version of [TeenyTinyLlama-162m](https://huggingface.co/nicholasKluge/TeenyTinyLlama-162m) fine-tuned on the [FaQuAD-NLI dataset](https://huggingface.co/datasets/ruanchaves/faquad-nli). ## Reproducing ```python # Faquad-nli ! pip install transformers datasets evaluate accelerate -q import evaluate import numpy as np from datasets import load_dataset, Dataset, DatasetDict from transformers import AutoTokenizer, DataCollatorWithPadding from transformers import AutoModelForSequenceClassification, TrainingArguments, Trainer # Load the task dataset = load_dataset("ruanchaves/faquad-nli") # Create a `ModelForSequenceClassification` model = AutoModelForSequenceClassification.from_pretrained( "nicholasKluge/TeenyTinyLlama-162m", num_labels=2, id2label={0: "UNSUITABLE", 1: "SUITABLE"}, label2id={"UNSUITABLE": 0, "SUITABLE": 1} ) tokenizer = AutoTokenizer.from_pretrained("nicholasKluge/TeenyTinyLlama-162m") # Format the dataset train = dataset['train'].to_pandas() train['text'] = train['question'] + tokenizer.bos_token + train['answer'] + tokenizer.eos_token train = train[['text', 'label']] train.labels = train.label.astype(int) train = Dataset.from_pandas(train) test = dataset['test'].to_pandas() test['text'] = test['question'] + tokenizer.bos_token + test['answer'] + tokenizer.eos_token test = test[['text', 'label']] test.labels = test.label.astype(int) test = Dataset.from_pandas(test) dataset = DatasetDict({ "train": train, "test": test }) # Preprocess the dataset def preprocess_function(examples): return tokenizer(examples["text"], truncation=True) dataset_tokenized = dataset.map(preprocess_function, batched=True) # Create a simple data collactor data_collator = DataCollatorWithPadding(tokenizer=tokenizer) # Use accuracy as evaluation metric accuracy = evaluate.load("accuracy") # Function to compute accuracy def compute_metrics(eval_pred): predictions, labels = eval_pred predictions = np.argmax(predictions, axis=1) return accuracy.compute(predictions=predictions, references=labels) # Define training arguments training_args = TrainingArguments( output_dir="checkpoints", learning_rate=4e-5, per_device_train_batch_size=16, per_device_eval_batch_size=16, num_train_epochs=3, weight_decay=0.01, evaluation_strategy="epochs", save_strategy="epochs", load_best_model_at_end=True, push_to_hub=True, hub_token="your_token_here", hub_model_id="username/model-ID" ) # Define the Trainer trainer = Trainer( model=model, args=training_args, train_dataset=dataset_tokenized["train"], eval_dataset=dataset_tokenized["test"], tokenizer=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, ) # Train! trainer.train() ``` ## Results | Models | [FaQuAD-NLI](https://huggingface.co/datasets/ruanchaves/faquad-nli) | |--------------------------------------------------------------------------------------------|---------------------------------------------------------------------| | [Teeny Tiny Llama 162m](https://huggingface.co/nicholasKluge/TeenyTinyLlama-162m) | 90.00 | | [Bert-base-portuguese-cased](https://huggingface.co/neuralmind/bert-base-portuguese-cased) | 93.07 | | [Gpt2-small-portuguese](https://huggingface.co/pierreguillou/gpt2-small-portuguese) | 86.46 |