--- tags: - tabular - regression - tabular-regression - dota --- ## Validation Metrics - Accuracy: 0.8284240188362744 - R2: 0.63 - MSE: 2428.91 - MAE: 34.33 - RMSE: 49.28 ## Usage ```python import numpy as np from numpy import random import pandas as pd import onnxruntime as ort # Load the saved file model_path = "rd2l_forest.onnx" session = ort.InferenceSession(model_path) # Define default naming scheme input_name = session.get_inputs()[0].name output_name = session.get_outputs()[0].name def prediction(input_data : np.ndarray) -> float """ Performs inference on the loaded ONNX model using the provided input data. Args: input_data (np.ndarray): An array of size (263,), this represents all of a singular players information Returns: float: The predicted cost of the player """ # Convert to onnx input format and reshape input_data = input_data.to_numpy(dtype=np.float32).reshape(1, -1) # Create prediction predictions = session.run([output_name], {input_name: input_data}) # Convert to individual value return round(float(predictions[0][0][0]), 2) sample_df = pd.DataFrame(np.random.rand(263)) prediction(sample_df) ``` --- license: mit ---