--- language: - it license: mit tags: - generated_from_trainer datasets: - tner/wikiann metrics: - precision - recall - f1 - accuracy widget: - text: 'Ciao, sono Giacomo. Vivo a Milano e lavoro da Armani. ' example_title: Example 1 - text: 'Domenica andrò allo stadio con Giovanna a guardare la Fiorentina. ' example_title: Example 2 base_model: dbmdz/bert-base-italian-cased model-index: - name: bert-italian-finetuned-ner results: - task: type: token-classification name: Token Classification dataset: name: wiki_neural type: wiki_neural config: it split: validation args: it metrics: - type: precision value: 0.9438064759036144 name: Precision - type: recall value: 0.954225352112676 name: Recall - type: f1 value: 0.9489873178118493 name: F1 - type: accuracy value: 0.9917883014379933 name: Accuracy --- # bert-italian-finetuned-ner This model is a fine-tuned version of [dbmdz/bert-base-italian-cased](https://huggingface.co/dbmdz/bert-base-italian-cased) on the wiki_neural dataset. It achieves the following results on the evaluation set: - Loss: 0.0361 - Precision: 0.9438 - Recall: 0.9542 - F1: 0.9490 - Accuracy: 0.9918 ## Model description Token classification for italian language experiment, NER. ### Example ```python from transformers import pipeline ner_pipeline = pipeline("ner", model="nickprock/bert-italian-finetuned-ner", aggregation_strategy="simple") text = "La sede storica della Olivetti è ad Ivrea" output = ner_pipeline(text) ``` ## Intended uses & limitations The model can be used on token classification, in particular NER. It is fine tuned on italian language. ## Training and evaluation data The dataset used is [wikiann](https://huggingface.co/datasets/tner/wikiann) ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 3 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:-----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0297 | 1.0 | 11050 | 0.0323 | 0.9324 | 0.9420 | 0.9372 | 0.9908 | | 0.0173 | 2.0 | 22100 | 0.0324 | 0.9445 | 0.9514 | 0.9479 | 0.9915 | | 0.0057 | 3.0 | 33150 | 0.0361 | 0.9438 | 0.9542 | 0.9490 | 0.9918 | ### Framework versions - Transformers 4.27.3 - Pytorch 1.13.0 - Datasets 2.1.0 - Tokenizers 0.13.2