--- license: apache-2.0 base_model: t5-small tags: - generated_from_trainer datasets: - billsum metrics: - rouge model-index: - name: Text_Summarization results: - task: name: Sequence-to-sequence Language Modeling type: text2text-generation dataset: name: billsum type: billsum config: default split: ca_test args: default metrics: - name: Rouge1 type: rouge value: 0.1447 --- # Text_Summarization This model is a fine-tuned version of [t5-small](https://huggingface.co/t5-small) on the billsum dataset. It achieves the following results on the evaluation set: - Loss: 2.5015 - Rouge1: 0.1447 - Rouge2: 0.0522 - Rougel: 0.1204 - Rougelsum: 0.1202 - Gen Len: 19.0 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| | No log | 1.0 | 62 | 2.7888 | 0.1267 | 0.0351 | 0.1053 | 0.1051 | 19.0 | | No log | 2.0 | 124 | 2.5770 | 0.1336 | 0.0452 | 0.1108 | 0.1107 | 19.0 | | No log | 3.0 | 186 | 2.5178 | 0.1439 | 0.0513 | 0.1188 | 0.1185 | 19.0 | | No log | 4.0 | 248 | 2.5015 | 0.1447 | 0.0522 | 0.1204 | 0.1202 | 19.0 | ### Framework versions - Transformers 4.33.1 - Pytorch 2.0.1+cu118 - Datasets 2.14.5 - Tokenizers 0.13.3