--- license: creativeml-openrail-m base_model: "black-forest-labs/FLUX.1-dev" tags: - stable-diffusion - stable-diffusion-diffusers - text-to-image - diffusers - simpletuner - lora - template:sd-lora inference: true --- # baahubaliflux This is a LoRA derived from [black-forest-labs/FLUX.1-dev](https://huggingface.co/black-forest-labs/FLUX.1-dev). The main validation prompt used during training was: ``` full body portrait of baahubali standing on the edge of a cliff looking at the camera ``` ## Validation settings - CFG: `3.5` - CFG Rescale: `0.0` - Steps: `30` - Sampler: `None` - Seed: `42` - Resolution: `1024` Note: The validation settings are not necessarily the same as the [training settings](#training-settings). The text encoder **was not** trained. You may reuse the base model text encoder for inference. ## Training settings - Training epochs: 3 - Training steps: 2000 - Learning rate: 0.0003 - Effective batch size: 1 - Micro-batch size: 1 - Gradient accumulation steps: 1 - Number of GPUs: 1 - Prediction type: epsilon - Rescaled betas zero SNR: False - Optimizer: AdamW, stochastic bf16 - Precision: Pure BF16 - Xformers: Not used - LoRA Rank: 16 - LoRA Alpha: 16 - LoRA Dropout: 0.1 - LoRA initialisation style: default ## Datasets ### baahubaliflux - Repeats: 0 - Total number of images: 599 - Total number of aspect buckets: 1 - Resolution: 1.0 megapixels - Cropped: True - Crop style: center - Crop aspect: square ## Inference ```python import torch from diffusers import DiffusionPipeline model_id = 'black-forest-labs/FLUX.1-dev' adapter_id = 'baahubaliflux' pipeline = DiffusionPipeline.from_pretrained(model_id)\pipeline.load_lora_weights(adapter_id) prompt = "full body portrait of baahubali standing on the edge of a cliff looking at the camera" negative_prompt = "blurry, cropped, ugly" pipeline.to('cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu') image = pipeline( prompt=prompt, negative_prompt='blurry, cropped, ugly', num_inference_steps=30, generator=torch.Generator(device='cuda' if torch.cuda.is_available() else 'mps' if torch.backends.mps.is_available() else 'cpu').manual_seed(1641421826), width=1152, height=768, guidance_scale=3.5, guidance_rescale=0.0, ).images[0] image.save("output.png", format="PNG") ```