--- license: apache-2.0 base_model: facebook/wav2vec2-base tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: wav2vec2-base-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.81 --- # wav2vec2-base-finetuned-gtzan This model is a fine-tuned version of [facebook/wav2vec2-base](https://huggingface.co/facebook/wav2vec2-base) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.6608 - Accuracy: 0.81 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 1.9578 | 1.0 | 113 | 1.8537 | 0.28 | | 1.4644 | 2.0 | 226 | 1.5867 | 0.5 | | 0.9624 | 3.0 | 339 | 1.1706 | 0.66 | | 0.8329 | 4.0 | 452 | 0.8807 | 0.76 | | 0.5047 | 5.0 | 565 | 0.9421 | 0.73 | | 0.4525 | 6.0 | 678 | 0.7879 | 0.73 | | 0.5111 | 7.0 | 791 | 0.6493 | 0.79 | | 0.1836 | 8.0 | 904 | 0.5938 | 0.85 | | 0.1806 | 9.0 | 1017 | 0.5787 | 0.84 | | 0.1338 | 10.0 | 1130 | 0.6608 | 0.81 | ### Framework versions - Transformers 4.32.0 - Pytorch 2.0.1+cu118 - Datasets 2.14.4 - Tokenizers 0.13.3