--- base_model: - microsoft/Phi-3.5-vision-instruct --- ## Eval ``` vllm serve nm-testing/Phi-3.5-vision-instruct-W8A8-Dynamic-Per-Token --trust-remote-code --max-model-len 100000 ``` ``` python -m eval.run eval_vllm --model_name nm-testing/Phi-3.5-vision-instruct-W8A8-Dynamic-Per-Token --url http://0.0.0.0:8000 --output_dir output/ --eval_name "chartqa" ... ================================================================================ Metrics: { "explicit_prompt_relaxed_correctness": 0.6472, "anywhere_in_answer_relaxed_correctness": 0.6616 } ================================================================================ ``` ## Creation ```python from datasets import load_dataset from transformers import AutoTokenizer, AutoModelForCausalLM from llmcompressor.modifiers.quantization import GPTQModifier # from llmcompressor.modifiers.smoothquant import SmoothQuantModifier from llmcompressor.transformers import oneshot, wrap_hf_model_class # Select model and load it. MODEL_ID = "microsoft/Phi-3.5-vision-instruct" model_class = wrap_hf_model_class(AutoModelForCausalLM) model = model_class.from_pretrained( MODEL_ID, device_map="auto", torch_dtype="auto", trust_remote_code=True, _attn_implementation="eager", ) processor = AutoTokenizer.from_pretrained(MODEL_ID, trust_remote_code=True) # Select calibration dataset. DATASET_ID = "HuggingFaceH4/ultrachat_200k" DATASET_SPLIT = "train_sft" # Select number of samples. 512 samples is a good place to start. # Increasing the number of samples can improve accuracy. NUM_CALIBRATION_SAMPLES = 512 MAX_SEQUENCE_LENGTH = 2048 # Load dataset and preprocess. ds = load_dataset(DATASET_ID, split=DATASET_SPLIT) ds = ds.shuffle(seed=42).select(range(NUM_CALIBRATION_SAMPLES)) def preprocess(example): return { "text": processor.apply_chat_template( example["messages"], tokenize=False, ) } ds = ds.map(preprocess) # Tokenize inputs. def tokenize(sample): return processor( sample["text"], padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False, ) ds = ds.map(tokenize, remove_columns=ds.column_names) print(ds) # Configure algorithms. In this case, we: # * apply SmoothQuant to make the activations easier to quantize # * quantize the weights to int8 with GPTQ (static per channel) # * quantize the activations to int8 (dynamic per token) # Note: set sequential_update: true in the recipe to reduce memory ignore=["re:.*lm_head", "re:model.vision_embed_tokens.*"] recipe = [ # SmoothQuantModifier(smoothing_strength=0.8, ignore=ignore), GPTQModifier(targets="Linear", scheme="W8A8", ignore=ignore), ] # Apply algorithms. oneshot( model=model, dataset=ds, recipe=recipe, max_seq_length=MAX_SEQUENCE_LENGTH, num_calibration_samples=NUM_CALIBRATION_SAMPLES, trust_remote_code_model=True, ) # Confirm generations of the quantized model look sane. print("\n\n") print("========== SAMPLE GENERATION ==============") input_ids = processor("Hello my name is", return_tensors="pt").input_ids.to("cuda") output = model.generate(input_ids, max_new_tokens=100) print(processor.decode(output[0])) print("==========================================\n\n") # Save to disk compressed. SAVE_DIR = MODEL_ID.split("/")[1] + "-W8A8-Dynamic-Per-Token" model.save_pretrained(SAVE_DIR, save_compressed=True) processor.save_pretrained(SAVE_DIR) ```