--- base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 inference: false model_type: llama prompt_template: | <|im_start|>user\n {prompt}<|im_end|>\n <|im_start|>assistant\n quantized_by: mwitiderrick tags: - deepsparse --- ## TinyLlama 1.1B Chat 1.0 - DeepSparse This repo contains model files for [TinyLlama 1.1B Chat](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0) optimized for [DeepSparse](https://github.com/neuralmagic/deepsparse), a CPU inference runtime for sparse models. This model was quantized and pruned with [SparseGPT](https://arxiv.org/abs/2301.00774), using [SparseML](https://github.com/neuralmagic/sparseml). ## Inference Install [DeepSparse LLM](https://github.com/neuralmagic/deepsparse) for fast inference on CPUs: ```bash pip install deepsparse-nightly[llm] ``` Run in a [Python pipeline](https://github.com/neuralmagic/deepsparse/blob/main/docs/llms/text-generation-pipeline.md): ```python from deepsparse import TextGeneration prompt = "How to make banana bread?" formatted_prompt = f"<|im_start|>user\n{prompt}<|im_end|>\n<|im_start|>assistant\n" model = TextGeneration(model_path="hf:nm-testing/TinyLlama-1.1B-Chat-v1.0-pruned50-quant-ds") print(model(formatted_prompt, max_new_tokens=200).generations[0].text) """ 1. Preheat the oven to 375°F (178°C). 2. In a mixing bowl, add 1 cup of all-purpose flour, 1 cup of melted coconut oil, 1/2 cup of sugar, 1/2 cup of banana, 1/2 cup of melted coconut oil, 1/2 cup of salt, 1/2 cup of vanilla extract, and 1/2 cup of baking powder. 3. Mix the ingredients together until they are well combined. 4. Add 1/2 cup of melted coconut oil to the mixture. 5. Add 1/2 cup of melted coconut oil to the mixture. 6. Mix the ingredients together until they are well combined. 7. Add 1/2 cup of melted """ ``` ## Prompt template ``` <|im_start|>user\n {prompt}<|im_end|>\n <|im_start|>assistant\n ``` ## Sparsification For details on how this model was sparsified, see the `recipe.yaml` in this repo and follow the instructions below. ```bash git clone https://github.com/neuralmagic/sparseml pip install -e "sparseml[transformers]" python sparseml/src/sparseml/transformers/sparsification/obcq/obcq.py TinyLlama/TinyLlama-1.1B-Chat-v1.0 open_platypus --precision float16 --recipe recipe.yaml --save True python sparseml/src/sparseml/transformers/sparsification/obcq/export.py --task text-generation --model_path obcq_deployment cp deployment/model.onnx deployment/model-orig.onnx ``` Run this kv-cache injection to speed up the model at inference by caching the Key and Value states: ```python import os import onnx from sparseml.exporters.kv_cache_injector import KeyValueCacheInjector input_file = "deployment/model-orig.onnx" output_file = "deployment/model.onnx" model = onnx.load(input_file, load_external_data=False) model = KeyValueCacheInjector(model_path=os.path.dirname(input_file)).apply(model) onnx.save(model, output_file) print(f"Modified model saved to: {output_file}") ``` Follow the instructions on our [One Shot With SparseML](https://github.com/neuralmagic/sparseml/tree/main/src/sparseml/transformers/sparsification/obcq) page for a step-by-step guide for performing one-shot quantization of large language models. ## Slack For further support, and discussions on these models and AI in general, join [Neural Magic's Slack Community](https://join.slack.com/t/discuss-neuralmagic/shared_invite/zt-q1a1cnvo-YBoICSIw3L1dmQpjBeDurQ)