--- language: - en library_name: peft pipeline_tag: text-generation tags: - medical license: cc-by-nc-3.0 --- # MedFalcon v2.1a 40b LoRA - Step 4500 ![img.png](img.png) ## Model Description This a model check point release at 4500 steps. For evaluation use only! Limitations: * LoRA output will be more concise than the base model * Due to the size, base knowledge may be overwritten from falcon-40b * Due to the size, more hardware may be required to load falcon-40b when using this LoRA ### Architecture `nmitchko/medfalconv2-1a-40b-lora'` is a large language model LoRa specifically fine-tuned for medical domain tasks. It is based on [`Falcon-40b`](https://huggingface.co/tiiuae/falcon-40b) at 40 billion parameters. The primary goal of this model is to improve question-answering and medical dialogue tasks. It was trained using [LoRA](https://arxiv.org/abs/2106.09685), specifically [QLora](https://github.com/artidoro/qlora), to reduce memory footprint. See Training Parameters for more info This Lora supports 4-bit and 8-bit modes. ### Requirements ``` bitsandbytes>=0.39.0 peft transformers ``` Steps to load this model: 1. Load base model using transformers 2. Apply LoRA using peft ```python # from transformers import AutoTokenizer, AutoModelForCausalLM import transformers import torch from peft import PeftModel model = "tiiuae/falcon-40b" LoRA = "nmitchko/medfalconv2-1a-40b-lora" # If you want 8 or 4 bit set the appropriate flags load_8bit = True tokenizer = AutoTokenizer.from_pretrained(model) model = AutoModelForCausalLM.from_pretrained(model, load_in_8bit=load_8bit, torch_dtype=torch.float16, trust_remote_code=True, ) model = PeftModel.from_pretrained(model, LoRA) pipeline = transformers.pipeline( "text-generation", model=model, tokenizer=tokenizer, torch_dtype=torch.bfloat16, trust_remote_code=True, device_map="auto", ) sequences = pipeline( "What does the drug ceftrioxone do?\nDoctor:", max_length=200, do_sample=True, top_k=40, num_return_sequences=1, eos_token_id=tokenizer.eos_token_id, ) for seq in sequences: print(f"Result: {seq['generated_text']}") ``` ## Training Parameters The model was trained for 4500 steps or 1 epoch on a custom, unreleased dataset named `medconcat`. `medconcat` contains only human generated content and weighs in at over 100MiB of raw text. The below bash script initiated training in `4bit` mode for a rather large LoRA: | Item | Amount | Units | |---------------|--------|-------| | LoRA Rank | 128 | ~ | | LoRA Alpha | 256 | ~ | | Learning Rate | 1e-3 | SI | | Dropout | 5 | % | ```bash CURRENTDATEONLY=`date +"%b %d %Y"` sudo nvidia-smi -i 1 -pl 250 export CUDA_VISIBLE_DEVICES=0 nohup python qlora.py \ --model_name_or_path models/tiiuae_falcon-40b \ --output_dir ./loras/medfalcon2.1a-40b \ --logging_steps 100 \ --save_strategy steps \ --data_seed 42 \ --save_steps 200 \ --save_total_limit 40 \ --evaluation_strategy steps \ --eval_dataset_size 1024 \ --max_eval_samples 1000 \ --per_device_eval_batch_size 1 \ --max_new_tokens 32 \ --dataloader_num_workers 3 \ --group_by_length \ --logging_strategy steps \ --remove_unused_columns False \ --do_train \ --lora_r 128 \ --lora_alpha 256 \ --lora_modules all \ --double_quant \ --quant_type nf4 \ --bf16 \ --bits 4 \ --warmup_ratio 0.03 \ --lr_scheduler_type constant \ --gradient_checkpointing \ --dataset="training/datasets/medconcat/" \ --dataset_format alpaca \ --trust_remote_code=True \ --source_max_len 16 \ --target_max_len 512 \ --per_device_train_batch_size 1 \ --gradient_accumulation_steps 16 \ --max_steps 4500 \ --eval_steps 1000 \ --learning_rate 0.0001 \ --adam_beta2 0.999 \ --max_grad_norm 0.3 \ --lora_dropout 0.05 \ --weight_decay 0.0 \ --seed 0 > "${CURRENTDATEONLY}-finetune-medfalcon2.1a.log" & ```