--- language: - ko license: apache-2.0 base_model: openai/whisper-small tags: - generated_from_trainer datasets: - gglabs/stt-test-1223 metrics: - wer model-index: - name: Whisper Small ko results: - task: name: Automatic Speech Recognition type: automatic-speech-recognition dataset: name: custom type: gglabs/stt-test-1223 args: 'config: ko, split: test' metrics: - name: Wer type: wer value: 46.19565217391305 --- # Whisper Small ko This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the custom dataset. It achieves the following results on the evaluation set: - Loss: 1.0537 - Wer: 46.1957 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 8 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 500 - training_steps: 100 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | |:-------------:|:------:|:----:|:---------------:|:-------:| | 0.9628 | 0.0112 | 10 | 1.5113 | 55.4348 | | 1.0128 | 0.0223 | 20 | 1.5033 | 53.2609 | | 0.7642 | 0.0335 | 30 | 1.4807 | 48.3696 | | 0.683 | 0.0446 | 40 | 1.4422 | 47.8261 | | 0.4836 | 0.0558 | 50 | 1.3840 | 48.3696 | | 0.207 | 0.0670 | 60 | 1.2772 | 49.4565 | | 0.0984 | 0.0781 | 70 | 1.1608 | 47.8261 | | 0.1485 | 0.0893 | 80 | 1.1003 | 45.1087 | | 0.0538 | 0.1004 | 90 | 1.0760 | 44.5652 | | 0.0349 | 0.1116 | 100 | 1.0537 | 46.1957 | ### Framework versions - Transformers 4.42.3 - Pytorch 2.3.1+cu121 - Datasets 3.0.0 - Tokenizers 0.19.1