# Shortened LLM Model Card Shortened LLM is a depth-pruned version of large language models for efficient text generation. - **Developed by:** [Nota AI](https://www.nota.ai/) - **License:** Non-commercial license - **Repository:** https://github.com/Nota-NetsPresso/shortened-llm - **Paper:** https://arxiv.org/abs/2402.02834 ## Compression Method * After identifying unimportant Transformer blocks, we perform **one-shot pruning**. * In retraining pruned models for quality recovery, **continued pretraining (CPT)** on a large corpus markedly outperforms LoRA-based tuning, particularly at severe pruning ratios. ## Models from Aggressive Pruning & CPT Retraining (arXiv-v2): | Source
Model | Pruning
Ratio | Pruning
Criterion | HF Models
Link | |:---:|:---:|:---:|:---:| | Vicuna-v1.3-7B | 20% | PPL | [nota-ai/cpt_st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-5.5b-ppl) | | Vicuna-v1.3-7B | 45% | PPL | [nota-ai/cpt_st-vicuna-v1.3-3.7b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-3.7b-ppl) | | Vicuna-v1.3-7B | 60% | PPL | [nota-ai/cpt_st-vicuna-v1.3-2.7b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-2.7b-ppl) | | Vicuna-v1.3-7B | 80% | PPL | [nota-ai/cpt_st-vicuna-v1.3-1.5b-ppl](https://huggingface.co/nota-ai/cpt_st-vicuna-v1.3-1.5b-ppl) |
Click to see the results: - EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c) results
#### Experimental Setup for CPT of Pruned Vicuna-7B * Dataset: [SlimPajama-627B](https://huggingface.co/datasets/cerebras/SlimPajama-627B) * Training using 8 NVIDIA H100 GPUs. * 5.5B parameters: 37B training tokens (for 6 days) * 3.7B parameters: 74B tokens (for 8 days) * 2.7B parameters: 150B tokens (for 12 days) * 1.5B parameters: 271B tokens (for 11 days) * AdamW optimizer with (β1, β2)=(0.9, 0.95); a learning rate of 0.0001; a weight decay of 0.1. * Global batch size: 512 (micro-batch size of 2 × 32 gradient accumulation steps × 8 GPUs).
Click to see the learning curve: **Zero-shot performance over the course of training for models from Vicuna-7B-v1.3 at different pruning ratios.** For each model size, the CPT duration was limited to a two-week period, but additional training could further improve the quality. results
## Models from Moderate Pruning & LoRA Retraining (arXiv-v1): | Source
Model | Pruning
Ratio | Pruning
Criterion | HF Models
Link | |:---:|:---:|:---:|:---:| | LLaMA-1-7B | 20% | PPL | [nota-ai/st-llama-1-5.5b-ppl](https://huggingface.co/nota-ai/st-llama-1-5.5b-ppl) | | LLaMA-1-7B | 20% | Taylor+ | [nota-ai/st-llama-1-5.5b-taylor](https://huggingface.co/nota-ai/st-llama-1-5.5b-taylor) | | Vicuna-v1.3-7B | 20% | PPL | [nota-ai/st-vicuna-v1.3-5.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-ppl) | | Vicuna-v1.3-7B | 20% | Taylor+ | [nota-ai/st-vicuna-v1.3-5.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-5.5b-taylor) | | Vicuna-v1.3-13B | 21% | PPL | [nota-ai/st-vicuna-v1.3-10.5b-ppl](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-ppl) | | Vicuna-v1.3-13B | 21% | Taylor+ | [nota-ai/st-vicuna-v1.3-10.5b-taylor](https://huggingface.co/nota-ai/st-vicuna-v1.3-10.5b-taylor) |
Click to see the results: - EleutherAI/lm-evaluation-harness version [3326c54](https://github.com/EleutherAI/lm-evaluation-harness/tree/3326c547a733d598b4377e54be96e194861b964c) results
## License - All rights related to this repository and the compressed models are reserved by Nota Inc. - The intended use is strictly limited to research and non-commercial projects. ## Acknowledgments - [Microsoft for Startups Founders Hub](https://www.microsoft.com/en-us/startups) and [Gwangju AICA](http://www.aica-gj.kr/main.php) for generously providing GPU resources. - [LLM-Pruner](https://github.com/horseee/LLM-Pruner), which utilizes [LM Evaluation Harness](https://github.com/EleutherAI/lm-evaluation-harness), [PEFT](https://github.com/huggingface/peft), and [Alpaca-LoRA](https://github.com/tloen/alpaca-lora). Thanks for the pioneering work on structured pruning of LLMs! - Meta AI's [LLaMA](https://github.com/facebookresearch/llama) and LMSYS Org's [Vicuna](https://github.com/lm-sys/FastChat/blob/main/docs/vicuna_weights_version.md). Thanks for the open-source LLMs! ## Citation ```bibtex @article{kim2024shortened, title={Shortened LLaMA: Depth Pruning for Large Language Models with Comparison of Retraining Methods}, author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu}, journal={arXiv preprint arXiv:2402.02834}, year={2024}, url={https://arxiv.org/abs/2402.02834} } ``` ```bibtex @article{kim2024mefomo, title={Shortened LLaMA: A Simple Depth Pruning for Large Language Models}, author={Kim, Bo-Kyeong and Kim, Geonmin and Kim, Tae-Ho and Castells, Thibault and Choi, Shinkook and Shin, Junho and Song, Hyoung-Kyu}, journal={ICLR Workshop on Mathematical and Empirical Understanding of Foundation Models (ME-FoMo)}, year={2024}, url={https://openreview.net/forum?id=18VGxuOdpu} } ```