--- license: mit base_model: TinyLlama/TinyLlama-1.1B-Chat-v1.0 tags: - trl - sft - sgd model-index: - name: mayo results: [] datasets: - nroggendorff/mayo language: - en --- # Mayonnaise LLM Mayo is a language model fine-tuned on the [Mayo dataset](https://huggingface.co/datasets/nroggendorff/mayo) using Supervised Fine-Tuning (SFT) and Teacher Reinforced Learning (TRL) techniques. It is based on the [TinyLlama/TinyLlama-1.1B-Chat-v1.0 model](https://huggingface.co/TinyLlama/TinyLlama-1.1B-Chat-v1.0). ## Features - Utilizes SFT and TRL techniques for improved performance - Supports English language ## Usage To use the Mayo LLM, you can load the model using the Hugging Face Transformers library: ```python from transformers import pipeline pipe = pipeline("text-generation", model="nroggendorff/mayo") question = "What color is the sky?" conv = [{"role": "user", "content": question}] response = pipe(conv, max_new_tokens=32)[0]['generated_text'][-1]['content'] print(response) ``` To use the model with quantization: ```python from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig bnb_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_use_double_quant=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16 ) model_id = "nroggendorff/mayo" tokenizer = AutoTokenizer.from_pretrained(model_id) model = AutoModelForCausalLM.from_pretrained(model_id, quantization_config=bnb_config) prompt = "<|user|>\nWhat color is the sky?\n" inputs = tokenizer(prompt, return_tensors="pt") outputs = model.generate(**inputs, max_new_tokens=32) generated_text = tokenizer.batch_decode(outputs)[0] print(generated_text) ``` ## License This project is licensed under the MIT License.