--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - dataset_size:10501 - loss:CosineSimilarityLoss base_model: klue/roberta-base widget: - source_sentence: 차로 15분 거리에 베네치아 로마광장에 도착할 수 있습니다. sentences: - 베니스 로마 광장까지 차로 15분 걸립니다. - 정말 너무나도 깨끗하고 편안한 숙소입니다. - 처음에 집찾기가 조금 힘들었지만 집이 있는 골목까지는 가기 쉬워요! - source_sentence: 다음번 대만 방문시 꼭 다시 오겠습니다. sentences: - 오늘 날씨는 비가 올까? 아니면 맑을까? - 몇몇 분야가 아니라 전 산업 분야가 위기 상황입니다. - 다음에 대만에 가면 꼭 돌아올게요. - source_sentence: 경기내륙에는 얼마나 비가 올 예정이야? sentences: - 특히 시험장 입구는 시험장 출입구가 통일되어 있으며, 시험장 출입구마다 손 소독 및 발열 검사를 실시하고 있습니다. - 좋은 파도가 들어오는 때는 다른 것 말고 서핑합시다. - 오늘 조치들은 소상공인 등이 가장 긴급하게 요청하는 금융 지원 대책들입니다. - source_sentence: 학교 성적표는 메일로 받는게 우편보다 편하고 좋을거야. sentences: - 학교 성적표를 기존 우편 대신 메일로 받아보세요. - 청산리 봉고동 전투 100주년을 기념합니다 - 시몬 역에서 잘 걸어요. - source_sentence: 주요 대책으로는 출산율 제고를 위한 주거·출산·보육 등 종합적 지원과 고령자 계속고용 활성화 및 고령자 맞춤형 일자리 지원, 노인복지 확대 등 고령화대응 정책노력의 지속이다. sentences: - 이중 ‘40대 일자리 대책’은 ▲직업훈련·교육 및 생계비 지원 ▲고용 지원 ▲창업 지원 ▲산업·지역 지원 등 40대 맞춤형 지원 방안이 담길 예정이다. - 사람이 많이 붐빌때는 조금 불편함은 감안해야 합니다. - 위치, 숙소 청결도, 호스트 모두 최고였어요. pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine model-index: - name: SentenceTransformer based on klue/roberta-base results: - task: type: semantic-similarity name: Semantic Similarity dataset: name: Unknown type: unknown metrics: - type: pearson_cosine value: 0.9618565828583842 name: Pearson Cosine - type: spearman_cosine value: 0.9203242816571715 name: Spearman Cosine --- # SentenceTransformer based on klue/roberta-base This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [klue/roberta-base](https://huggingface.co/klue/roberta-base). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [klue/roberta-base](https://huggingface.co/klue/roberta-base) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 dimensions - **Similarity Function:** Cosine Similarity ### Model Sources - **Documentation:** [Sentence Transformers Documentation](https://sbert.net) - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers) - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers) ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: RobertaModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("sentence_transformers_model_id") # Run inference sentences = [ '주요 대책으로는 출산율 제고를 위한 주거·출산·보육 등 종합적 지원과 고령자 계속고용 활성화 및 고령자 맞춤형 일자리 지원, 노인복지 확대 등 고령화대응 정책노력의 지속이다.', '이중 ‘40대 일자리 대책’은 ▲직업훈련·교육 및 생계비 지원 ▲고용 지원 ▲창업 지원 ▲산업·지역 지원 등 40대 맞춤형 지원 방안이 담길 예정이다.', '사람이 많이 붐빌때는 조금 불편함은 감안해야 합니다.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` ## Evaluation ### Metrics #### Semantic Similarity * Evaluated with [EmbeddingSimilarityEvaluator](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator) | Metric | Value | |:--------------------|:-----------| | pearson_cosine | 0.9619 | | **spearman_cosine** | **0.9203** | ## Training Details ### Training Dataset #### Unnamed Dataset * Size: 10,501 training samples * Columns: sentence_0, sentence_1, and label * Approximate statistics based on the first 1000 samples: | | sentence_0 | sentence_1 | label | |:--------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------| | type | string | string | float | | details | | | | * Samples: | sentence_0 | sentence_1 | label | |:----------------------------------------------------------------------|:----------------------------------------------------------------------------------|:------------------| | 그리고 대만의 번화가인 시먼을 즐기기에 위치는 너무 좋았습니다. | 그리고 대만 시내 중심가인 시몬을 즐기기에 좋은 장소였습니다. | 0.7 | | 또 최근 1주일 간 해외 유입 확진자는 140명, 일평균 20명으로 전 주 대비 일평균 2명 늘었다. | 게다가, 해외로의 확인된 유입의 수는 전주에 비해 하루 평균 2개 증가하여 140개 그리고 하루 평균 20개가 되었습니다. | 0.58 | | 한국인으로서 신경쓰이는 점 적겠습니다. | 저희 방의 경우 바닥이 삐그덕 거리는 부준이 조금더 신경쓰이는 부분이었습니다. | 0.16 | * Loss: [CosineSimilarityLoss](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters: ```json { "loss_fct": "torch.nn.modules.loss.MSELoss" } ``` ### Training Hyperparameters #### Non-Default Hyperparameters - `eval_strategy`: steps - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `num_train_epochs`: 4 - `multi_dataset_batch_sampler`: round_robin #### All Hyperparameters
Click to expand - `overwrite_output_dir`: False - `do_predict`: False - `eval_strategy`: steps - `prediction_loss_only`: True - `per_device_train_batch_size`: 16 - `per_device_eval_batch_size`: 16 - `per_gpu_train_batch_size`: None - `per_gpu_eval_batch_size`: None - `gradient_accumulation_steps`: 1 - `eval_accumulation_steps`: None - `torch_empty_cache_steps`: None - `learning_rate`: 5e-05 - `weight_decay`: 0.0 - `adam_beta1`: 0.9 - `adam_beta2`: 0.999 - `adam_epsilon`: 1e-08 - `max_grad_norm`: 1 - `num_train_epochs`: 4 - `max_steps`: -1 - `lr_scheduler_type`: linear - `lr_scheduler_kwargs`: {} - `warmup_ratio`: 0.0 - `warmup_steps`: 0 - `log_level`: passive - `log_level_replica`: warning - `log_on_each_node`: True - `logging_nan_inf_filter`: True - `save_safetensors`: True - `save_on_each_node`: False - `save_only_model`: False - `restore_callback_states_from_checkpoint`: False - `no_cuda`: False - `use_cpu`: False - `use_mps_device`: False - `seed`: 42 - `data_seed`: None - `jit_mode_eval`: False - `use_ipex`: False - `bf16`: False - `fp16`: False - `fp16_opt_level`: O1 - `half_precision_backend`: auto - `bf16_full_eval`: False - `fp16_full_eval`: False - `tf32`: None - `local_rank`: 0 - `ddp_backend`: None - `tpu_num_cores`: None - `tpu_metrics_debug`: False - `debug`: [] - `dataloader_drop_last`: False - `dataloader_num_workers`: 0 - `dataloader_prefetch_factor`: None - `past_index`: -1 - `disable_tqdm`: False - `remove_unused_columns`: True - `label_names`: None - `load_best_model_at_end`: False - `ignore_data_skip`: False - `fsdp`: [] - `fsdp_min_num_params`: 0 - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False} - `fsdp_transformer_layer_cls_to_wrap`: None - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None} - `deepspeed`: None - `label_smoothing_factor`: 0.0 - `optim`: adamw_torch - `optim_args`: None - `adafactor`: False - `group_by_length`: False - `length_column_name`: length - `ddp_find_unused_parameters`: None - `ddp_bucket_cap_mb`: None - `ddp_broadcast_buffers`: False - `dataloader_pin_memory`: True - `dataloader_persistent_workers`: False - `skip_memory_metrics`: True - `use_legacy_prediction_loop`: False - `push_to_hub`: False - `resume_from_checkpoint`: None - `hub_model_id`: None - `hub_strategy`: every_save - `hub_private_repo`: None - `hub_always_push`: False - `gradient_checkpointing`: False - `gradient_checkpointing_kwargs`: None - `include_inputs_for_metrics`: False - `include_for_metrics`: [] - `eval_do_concat_batches`: True - `fp16_backend`: auto - `push_to_hub_model_id`: None - `push_to_hub_organization`: None - `mp_parameters`: - `auto_find_batch_size`: False - `full_determinism`: False - `torchdynamo`: None - `ray_scope`: last - `ddp_timeout`: 1800 - `torch_compile`: False - `torch_compile_backend`: None - `torch_compile_mode`: None - `dispatch_batches`: None - `split_batches`: None - `include_tokens_per_second`: False - `include_num_input_tokens_seen`: False - `neftune_noise_alpha`: None - `optim_target_modules`: None - `batch_eval_metrics`: False - `eval_on_start`: False - `use_liger_kernel`: False - `eval_use_gather_object`: False - `average_tokens_across_devices`: False - `prompts`: None - `batch_sampler`: batch_sampler - `multi_dataset_batch_sampler`: round_robin
### Training Logs | Epoch | Step | Training Loss | spearman_cosine | |:------:|:----:|:-------------:|:---------------:| | 0.7610 | 500 | 0.0277 | - | | 1.0 | 657 | - | 0.9102 | | 1.5221 | 1000 | 0.0082 | 0.9137 | | 2.0 | 1314 | - | 0.9174 | | 2.2831 | 1500 | 0.0052 | - | | 3.0 | 1971 | - | 0.9199 | | 3.0441 | 2000 | 0.0034 | 0.9192 | | 3.8052 | 2500 | 0.0026 | - | | 4.0 | 2628 | - | 0.9203 | ### Framework Versions - Python: 3.10.12 - Sentence Transformers: 3.3.1 - Transformers: 4.47.1 - PyTorch: 2.5.1+cu121 - Accelerate: 1.2.1 - Datasets: 3.2.0 - Tokenizers: 0.21.0 ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ```