--- library_name: peft language: - en license: apache-2.0 base_model: openai/whisper-large-v3 tags: - wft - whisper - automatic-speech-recognition - audio - speech - generated_from_trainer datasets: - ntnu-smil/ami-1s-ft metrics: - wer model-index: - name: whisper-large-v3-ami-1 results: - task: type: automatic-speech-recognition name: Automatic Speech Recognition dataset: name: ntnu-smil/ami-1s-ft type: ntnu-smil/ami-1s-ft metrics: - type: wer value: 73.28296703296702 name: Wer --- # whisper-large-v3-ami-1 This model is a fine-tuned version of [openai/whisper-large-v3](https://huggingface.co/openai/whisper-large-v3) on the ntnu-smil/ami-1s-ft dataset. It achieves the following results on the evaluation set: - Loss: 3.6457 - Wer: 73.2830 - Cer: 65.1890 - Decode Runtime: 3.7197 - Wer Runtime: 0.0090 - Cer Runtime: 0.0152 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 7e-05 - train_batch_size: 128 - eval_batch_size: 128 - seed: 42 - gradient_accumulation_steps: 8 - total_train_batch_size: 1024 - optimizer: Use adamw_torch with betas=(0.9,0.98) and epsilon=1e-06 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 50 - training_steps: 130 ### Training results | Training Loss | Epoch | Step | Validation Loss | Wer | Cer | Decode Runtime | Wer Runtime | Cer Runtime | |:-------------:|:------:|:----:|:---------------:|:--------:|:--------:|:--------------:|:-----------:|:-----------:| | 2.2365 | 0.0769 | 10 | 3.2101 | 71.2225 | 305.1720 | 5.7416 | 0.0099 | 0.0322 | | 1.9464 | 0.1538 | 20 | 3.1678 | 81.2843 | 319.6875 | 5.8313 | 0.0098 | 0.0337 | | 1.5994 | 0.2308 | 30 | 3.0765 | 106.4904 | 341.3692 | 5.8220 | 0.0105 | 0.0351 | | 1.1357 | 0.3077 | 40 | 3.2982 | 129.5330 | 214.6070 | 5.6144 | 0.0102 | 0.0259 | | 0.4404 | 0.3846 | 50 | 3.4638 | 72.2871 | 98.6465 | 3.8830 | 0.0093 | 0.0179 | | 0.3252 | 0.4615 | 60 | 3.3927 | 65.1099 | 80.9729 | 3.7645 | 0.0091 | 0.0167 | | 0.3713 | 1.0231 | 70 | 3.4800 | 58.9629 | 49.3854 | 3.4950 | 0.0090 | 0.0142 | | 0.2562 | 1.1 | 80 | 3.5965 | 54.0522 | 31.3522 | 3.3013 | 0.0089 | 0.0130 | | 0.1821 | 1.1769 | 90 | 3.6241 | 70.4327 | 56.6693 | 3.6241 | 0.0089 | 0.0146 | | 0.1847 | 1.2538 | 100 | 3.6725 | 66.2775 | 50.4512 | 3.6175 | 0.0090 | 0.2387 | | 0.2257 | 1.3308 | 110 | 3.6518 | 64.8695 | 50.6408 | 3.5330 | 0.0090 | 0.0141 | | 0.2672 | 1.4077 | 120 | 3.6463 | 69.7802 | 59.8928 | 3.6917 | 0.0090 | 0.0146 | | 0.2578 | 1.4846 | 130 | 3.6457 | 73.2830 | 65.1890 | 3.7197 | 0.0090 | 0.0152 | ### Framework versions - PEFT 0.14.0 - Transformers 4.48.0 - Pytorch 2.5.1 - Datasets 3.2.0 - Tokenizers 0.21.0