--- language: - ko license: apache-2.0 base_model: openai/whisper-small tags: - transcribe - generated_from_trainer datasets: - mozilla-foundation/common_voice_13_0 model-index: - name: ./whisper-small-test230724_1000 results: [] --- # ./whisper-small-test230724_1000 This model is a fine-tuned version of [openai/whisper-small](https://huggingface.co/openai/whisper-small) on the Common Voice 13.0 dataset. It achieves the following results on the evaluation set: - Loss: 0.7148 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 1e-05 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_steps: 40 - training_steps: 40 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 2.9199 | 0.5263 | 10 | 2.5824 | | 2.043 | 1.0526 | 20 | 1.8251 | | 1.1702 | 1.5789 | 30 | 0.9278 | | 0.7203 | 2.1053 | 40 | 0.7148 | ### Framework versions - Transformers 4.42.0.dev0 - Pytorch 2.3.0+cu121 - Datasets 2.19.2 - Tokenizers 0.19.1