--- license: mit base_model: microsoft/deberta-v3-large tags: - generated_from_trainer metrics: - precision - recall - f1 - accuracy model-index: - name: deberta-v3-large-262-ver1 results: [] --- # deberta-v3-large-262-ver1 This model is a fine-tuned version of [microsoft/deberta-v3-large](https://huggingface.co/microsoft/deberta-v3-large) on an unknown dataset. It achieves the following results on the evaluation set: - Loss: 0.0768 - Precision: 0.9904 - Recall: 0.9904 - F1: 0.9904 - Accuracy: 0.9904 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-05 - train_batch_size: 12 - eval_batch_size: 12 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 5 ### Training results | Training Loss | Epoch | Step | Validation Loss | Precision | Recall | F1 | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:---------:|:------:|:------:|:--------:| | 0.0624 | 1.0 | 1287 | 0.0447 | 0.9907 | 0.9907 | 0.9907 | 0.9907 | | 0.0272 | 2.0 | 2574 | 0.0899 | 0.9865 | 0.9865 | 0.9865 | 0.9865 | | 0.0136 | 3.0 | 3861 | 0.0605 | 0.9894 | 0.9894 | 0.9894 | 0.9894 | | 0.0071 | 4.0 | 5148 | 0.0771 | 0.9894 | 0.9894 | 0.9894 | 0.9894 | | 0.0015 | 5.0 | 6435 | 0.0768 | 0.9904 | 0.9904 | 0.9904 | 0.9904 | ### Framework versions - Transformers 4.44.0 - Pytorch 2.2.0 - Datasets 2.20.0 - Tokenizers 0.19.1