--- tags: - sentence-transformers - sentence-similarity - feature-extraction - generated_from_trainer - loss:MatryoshkaLoss - loss:MultipleNegativesRankingLoss - mteb base_model: aubmindlab/bert-base-arabertv02 pipeline_tag: sentence-similarity library_name: sentence-transformers metrics: - pearson_cosine - spearman_cosine - pearson_manhattan - spearman_manhattan - pearson_euclidean - spearman_euclidean - pearson_dot - spearman_dot - pearson_max - spearman_max model-index: - name: omarelshehy/Arabic-STS-Matryoshka-V2 results: - dataset: config: ar-ar name: MTEB STS17 (ar-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 85.1977 - type: spearman value: 86.0559 - type: cosine_pearson value: 85.1977 - type: cosine_spearman value: 86.0559 - type: manhattan_pearson value: 83.01950000000001 - type: manhattan_spearman value: 85.28620000000001 - type: euclidean_pearson value: 83.1524 - type: euclidean_spearman value: 85.3787 - type: main_score value: 86.0559 task: type: STS - dataset: config: en-ar name: MTEB STS17 (en-ar) revision: faeb762787bd10488a50c8b5be4a3b82e411949c split: test type: mteb/sts17-crosslingual-sts metrics: - type: pearson value: 16.234 - type: spearman value: 13.337499999999999 - type: cosine_pearson value: 16.234 - type: cosine_spearman value: 13.337499999999999 - type: manhattan_pearson value: 11.103200000000001 - type: manhattan_spearman value: 8.8513 - type: euclidean_pearson value: 10.7335 - type: euclidean_spearman value: 7.857 - type: main_score value: 13.337499999999999 task: type: STS - dataset: config: ar name: MTEB STS22 (ar) revision: de9d86b3b84231dc21f76c7b7af1f28e2f57f6e3 split: test type: mteb/sts22-crosslingual-sts metrics: - type: pearson value: 49.8116 - type: spearman value: 58.7217 - type: cosine_pearson value: 49.8116 - type: cosine_spearman value: 58.7217 - type: manhattan_pearson value: 55.281499999999994 - type: manhattan_spearman value: 58.658 - type: euclidean_pearson value: 54.600300000000004 - type: euclidean_spearman value: 58.59029999999999 - type: main_score value: 58.7217 task: type: STS --- # SentenceTransformer based on aubmindlab/bert-base-arabertv02 🚀 🚀 This is **Arabic only** [sentence-transformers](https://www.SBERT.net) model finetuned from [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02). It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for **semantic textual similarity**, **semantic search**, **clustering**, and more. # Matryoshka Embeddings 🪆 This model supports Matryoshka embeddings, allowing you to truncate embeddings into smaller sizes to optimize performance and memory usage, based on your task requirements. Available truncation sizes include: **768**, **512**, **256**, **128**, and **64** You can select the appropriate embedding size for your use case, ensuring flexibility in resource management. ## Model Details ### Model Description - **Model Type:** Sentence Transformer - **Base model:** [aubmindlab/bert-base-arabertv02](https://huggingface.co/aubmindlab/bert-base-arabertv02) - **Maximum Sequence Length:** 512 tokens - **Output Dimensionality:** 768 tokens - **Similarity Function:** Cosine Similarity ### Full Model Architecture ``` SentenceTransformer( (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True}) ) ``` ## Usage ### Direct Usage (Sentence Transformers) First install the Sentence Transformers library: ```bash pip install -U sentence-transformers ``` Then you can load this model and run inference. ```python from sentence_transformers import SentenceTransformer # Download from the 🤗 Hub model = SentenceTransformer("omarelshehy/Arabic-STS-Matryoshka-V2") # Run inference sentences = [ 'أحب قراءة الكتب في أوقات فراغي.', 'أستمتع بقراءة القصص في المساء قبل النوم.', 'القراءة تعزز معرفتي وتفتح أمامي آفاق جديدة.', ] embeddings = model.encode(sentences) print(embeddings.shape) # [3, 768] # Get the similarity scores for the embeddings similarities = model.similarity(embeddings, embeddings) print(similarities.shape) # [3, 3] ``` # 📊 Evaluation (Performance vs Embedding size) I evaluated this model on the MTEB STS17 for arabic for different Embedding sizes 🪆 The results are plotted below: ![Plot](https://huggingface.co/omarelshehy/Arabic-STS-Matryoshka-V2/resolve/main/sts_matryoshka_v2_eval.png) as seen from the plot, only very small degradation of performance happens across smaller matryoshka embedding sizes. ## Citation ### BibTeX #### Sentence Transformers ```bibtex @inproceedings{reimers-2019-sentence-bert, title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks", author = "Reimers, Nils and Gurevych, Iryna", booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing", month = "11", year = "2019", publisher = "Association for Computational Linguistics", url = "https://arxiv.org/abs/1908.10084", } ``` #### MatryoshkaLoss ```bibtex @misc{kusupati2024matryoshka, title={Matryoshka Representation Learning}, author={Aditya Kusupati and Gantavya Bhatt and Aniket Rege and Matthew Wallingford and Aditya Sinha and Vivek Ramanujan and William Howard-Snyder and Kaifeng Chen and Sham Kakade and Prateek Jain and Ali Farhadi}, year={2024}, eprint={2205.13147}, archivePrefix={arXiv}, primaryClass={cs.LG} } ``` #### MultipleNegativesRankingLoss ```bibtex @misc{henderson2017efficient, title={Efficient Natural Language Response Suggestion for Smart Reply}, author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil}, year={2017}, eprint={1705.00652}, archivePrefix={arXiv}, primaryClass={cs.CL} } ```