--- license: bsd-3-clause base_model: MIT/ast-finetuned-audioset-10-10-0.450 tags: - generated_from_trainer datasets: - marsyas/gtzan metrics: - accuracy model-index: - name: ast-finetuned-audioset-10-10-0.450-finetuned-gtzan results: - task: name: Audio Classification type: audio-classification dataset: name: GTZAN type: marsyas/gtzan config: all split: train args: all metrics: - name: Accuracy type: accuracy value: 0.88 --- # ast-finetuned-audioset-10-10-0.450-finetuned-gtzan This model is a fine-tuned version of [MIT/ast-finetuned-audioset-10-10-0.450](https://huggingface.co/MIT/ast-finetuned-audioset-10-10-0.450) on the GTZAN dataset. It achieves the following results on the evaluation set: - Loss: 0.4457 - Accuracy: 0.88 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 20 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5804 | 1.0 | 57 | 0.5356 | 0.84 | | 0.2655 | 2.0 | 114 | 0.5664 | 0.76 | | 0.1767 | 3.0 | 171 | 0.3925 | 0.88 | | 0.4169 | 4.0 | 228 | 0.8874 | 0.78 | | 0.0685 | 5.0 | 285 | 0.6067 | 0.83 | | 0.0725 | 6.0 | 342 | 0.5612 | 0.81 | | 0.1003 | 7.0 | 399 | 0.6928 | 0.82 | | 0.004 | 8.0 | 456 | 0.4814 | 0.86 | | 0.0122 | 9.0 | 513 | 0.6141 | 0.86 | | 0.0009 | 10.0 | 570 | 0.4017 | 0.91 | | 0.0828 | 11.0 | 627 | 0.4937 | 0.88 | | 0.0025 | 12.0 | 684 | 0.8455 | 0.82 | | 0.0005 | 13.0 | 741 | 0.4439 | 0.89 | | 0.0001 | 14.0 | 798 | 0.4956 | 0.87 | | 0.0001 | 15.0 | 855 | 0.4362 | 0.88 | | 0.0001 | 16.0 | 912 | 0.4146 | 0.89 | | 0.0299 | 17.0 | 969 | 0.4241 | 0.9 | | 0.0001 | 18.0 | 1026 | 0.4375 | 0.87 | | 0.0001 | 19.0 | 1083 | 0.4502 | 0.88 | | 0.0001 | 20.0 | 1140 | 0.4457 | 0.88 | ### Framework versions - Transformers 4.36.0.dev0 - Pytorch 2.1.0+cu118 - Datasets 2.15.0 - Tokenizers 0.15.0