--- license: apache-2.0 base_model: google/vit-base-patch16-224-in21k tags: - generated_from_trainer datasets: - imagefolder metrics: - accuracy model-index: - name: attraction-classifier results: - task: name: Image Classification type: image-classification dataset: name: imagefolder type: imagefolder config: default split: train args: default metrics: - name: Accuracy type: accuracy value: 0.7786790266512167 --- # attraction-classifier This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the imagefolder dataset. It achieves the following results on the evaluation set: - Loss: 0.4928 - Accuracy: 0.7787 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 5e-05 - train_batch_size: 16 - eval_batch_size: 16 - seed: 69 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - lr_scheduler_warmup_ratio: 0.1 - num_epochs: 10 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 0.5947 | 0.69 | 150 | 0.5553 | 0.7207 | | 0.5428 | 1.39 | 300 | 0.5073 | 0.7428 | | 0.5383 | 2.08 | 450 | 0.4809 | 0.7729 | | 0.5369 | 2.78 | 600 | 0.4887 | 0.7520 | | 0.3966 | 3.47 | 750 | 0.5199 | 0.7520 | | 0.3722 | 4.17 | 900 | 0.4805 | 0.7706 | | 0.3758 | 4.86 | 1050 | 0.4658 | 0.7868 | | 0.2742 | 5.56 | 1200 | 0.4732 | 0.7949 | | 0.2333 | 6.25 | 1350 | 0.4981 | 0.7822 | | 0.2318 | 6.94 | 1500 | 0.4928 | 0.7787 | ### Framework versions - Transformers 4.35.2 - Pytorch 2.0.1+cu117 - Datasets 2.15.0 - Tokenizers 0.15.0