--- license: mit base_model: - UsefulSensors/moonshine-base library_name: transformers.js pipeline_tag: automatic-speech-recognition --- ## Usage ### Transformers.js If you haven't already, you can install the [Transformers.js](https://huggingface.co/docs/transformers.js) JavaScript library from [NPM](https://www.npmjs.com/package/@huggingface/transformers) using: ```bash npm i @huggingface/transformers ``` **Example:** Automatic speech recognition w/ Moonshine base. ```js import { pipeline } from "@huggingface/transformers"; const transcriber = await pipeline("automatic-speech-recognition", "onnx-community/moonshine-base-ONNX"); const output = await transcriber("https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/jfk.wav"); console.log(output); // { text: 'And so my fellow Americans ask not what your country can do for you as what you can do for your country.' } ``` ### ONNXRuntime ```py import numpy as np import onnxruntime as ort from transformers import AutoConfig, AutoTokenizer import librosa # Load config and tokenizer model_id = 'onnx-community/moonshine-base-ONNX' config = AutoConfig.from_pretrained(model_id) tokenizer = AutoTokenizer.from_pretrained(model_id) # Load encoder and decoder sessions encoder_session = ort.InferenceSession('./onnx/encoder_model_quantized.onnx') decoder_session = ort.InferenceSession('./onnx/decoder_model_merged_quantized.onnx') # Set config values eos_token_id = config.eos_token_id num_key_value_heads = config.decoder_num_key_value_heads dim_kv = config.hidden_size // config.decoder_num_attention_heads # Load audio audio_file = 'jfk.wav' audio = librosa.load(audio_file, sr=16_000)[0][None] # Run encoder encoder_outputs = encoder_session.run(None, dict(input_values=audio))[0] # Prepare decoder inputs batch_size = encoder_outputs.shape[0] input_ids = np.array([[config.decoder_start_token_id]] * batch_size) past_key_values = { f'past_key_values.{layer}.{module}.{kv}': np.zeros([batch_size, num_key_value_heads, 0, dim_kv], dtype=np.float32) for layer in range(config.decoder_num_hidden_layers) for module in ('decoder', 'encoder') for kv in ('key', 'value') } # max 6 tokens per second of audio max_len = min((audio.shape[-1] // 16_000) * 6, config.max_position_embeddings) generated_tokens = input_ids for i in range(max_len): use_cache_branch = i > 0 logits, *present_key_values = decoder_session.run(None, dict( input_ids=generated_tokens[:, -1:], encoder_hidden_states=encoder_outputs, use_cache_branch=[use_cache_branch], **past_key_values, )) next_tokens = logits[:, -1].argmax(-1, keepdims=True) for j, key in enumerate(past_key_values): if not use_cache_branch or 'decoder' in key: past_key_values[key] = present_key_values[j] generated_tokens = np.concatenate([generated_tokens, next_tokens], axis=-1) if (next_tokens == eos_token_id).all(): break result = tokenizer.batch_decode(generated_tokens, skip_special_tokens=True) print(result) ```