--- base_model: pyannote/segmentation-3.0 library_name: transformers.js license: mit --- https://huggingface.co/pyannote/segmentation-3.0 with ONNX weights to be compatible with Transformers.js. ## Transformers.js (v3) usage ```js import { AutoProcessor, AutoModelForAudioFrameClassification, read_audio } from '@xenova/transformers'; // Load model and processor const model_id = 'onnx-community/pyannote-segmentation-3.0'; const model = await AutoModelForAudioFrameClassification.from_pretrained(model_id); const processor = await AutoProcessor.from_pretrained(model_id); // Read and preprocess audio const url = 'https://huggingface.co/datasets/Xenova/transformers.js-docs/resolve/main/mlk.wav'; const audio = await read_audio(url, processor.feature_extractor.config.sampling_rate); const inputs = await processor(audio); // Run model with inputs const { logits } = await model(inputs); // { // logits: Tensor { // dims: [ 1, 767, 7 ], // [batch_size, num_frames, num_classes] // type: 'float32', // data: Float32Array(5369) [ ... ], // size: 5369 // } // } const result = processor.post_process_speaker_diarization(logits, audio.length); // [ // [ // { id: 0, start: 0, end: 1.0512535626298245, confidence: 0.8220156481664611 }, // { id: 2, start: 1.0512535626298245, end: 2.3398869619825127, confidence: 0.9008811707860472 }, // ... // ] // ] // Display result console.table(result[0], ['start', 'end', 'id', 'confidence']); // ┌─────────┬────────────────────┬────────────────────┬────┬─────────────────────┐ // │ (index) │ start │ end │ id │ confidence │ // ├─────────┼────────────────────┼────────────────────┼────┼─────────────────────┤ // │ 0 │ 0 │ 1.0512535626298245 │ 0 │ 0.8220156481664611 │ // │ 1 │ 1.0512535626298245 │ 2.3398869619825127 │ 2 │ 0.9008811707860472 │ // │ 2 │ 2.3398869619825127 │ 3.5946089560890773 │ 0 │ 0.7521651315796233 │ // │ 3 │ 3.5946089560890773 │ 4.578039708226655 │ 2 │ 0.8491978128022479 │ // │ 4 │ 4.578039708226655 │ 4.594995410849717 │ 0 │ 0.2935352600416393 │ // │ 5 │ 4.594995410849717 │ 6.121008646925269 │ 3 │ 0.6788051309866024 │ // │ 6 │ 6.121008646925269 │ 6.256654267909762 │ 0 │ 0.37125512393851134 │ // │ 7 │ 6.256654267909762 │ 8.630452635138397 │ 2 │ 0.7467035186353542 │ // │ 8 │ 8.630452635138397 │ 10.088643060721703 │ 0 │ 0.7689364814666032 │ // │ 9 │ 10.088643060721703 │ 12.58113134631177 │ 2 │ 0.9123324509131324 │ // │ 10 │ 12.58113134631177 │ 13.005023911888312 │ 0 │ 0.4828358177572041 │ // └─────────┴────────────────────┴────────────────────┴────┴─────────────────────┘ ``` ## Torch → ONNX conversion code: ```py # pip install torch onnx https://github.com/pyannote/pyannote-audio/archive/refs/heads/develop.zip import torch from pyannote.audio import Model model = Model.from_pretrained( "pyannote/segmentation-3.0", use_auth_token="hf_...", # <-- Set your HF token here ).eval() dummy_input = torch.zeros(2, 1, 160000) torch.onnx.export( model, dummy_input, 'model.onnx', do_constant_folding=True, input_names=["input_values"], output_names=["logits"], dynamic_axes={ "input_values": {0: "batch_size", 1: "num_channels", 2: "num_samples"}, "logits": {0: "batch_size", 1: "num_frames"}, }, ) ``` --- Note: Having a separate repo for ONNX weights is intended to be a temporary solution until WebML gains more traction. If you would like to make your models web-ready, we recommend converting to ONNX using [🤗 Optimum](https://huggingface.co/docs/optimum/index) and structuring your repo like this one (with ONNX weights located in a subfolder named `onnx`).